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Description
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Abstract— Despite continuous advancements in deep
learning for understanding human motion, existing mod-
els often struggle to accurately identify action timing and
specific body parts, typically supporting only single-round
interaction. This limitation is particularly pronounced in
home exercise monitoring, neurological disorder assess-
ment, and rehabilitation, where precise motion analysis is
crucial for ensuring exercise efficacy, detecting early sighs
of neurological conditions, and guiding personalized recov-
ery programs. In this paper, we propose MoChat, a mul-
timodal large language model capable of spatio-temporal
grounding of human motion and multi-turn dialogue under-
standing. To achieve this, we first group spatial features in
skeleton frames according to human anatomical structures
and process them through a Joints-Grouped Skeleton En-
coder. The encoder’s outputs are fused with large language
model embeddings to generate spatio-aware representa-
tions. A cross-attention-based Regression Head module
is then designed to align hidden-layer embeddings and
skeletal sequence embeddings, enabling precise temporal
grounding. Furthermore, we develop a pipeline for temporal
grounding task to extract timestamps from skeleton-text
pairs and construct a multi-turn instruction dialogues for
spatial grounding task. Finally, various task instructions are
generated for jointly training. Experimental results demon-
strate that MoChat achieves state-of-the-art performance
across multiple metrics in motion understanding tasks,
making it as the first model capable of fine-grained spatio-
temporal grounding of human motion.

Index Terms—Large language model, motion analysis,
multimodal, skeleton, spatiotemporal phenomena
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Fig. 1. lllustration of the multi-turn spatio-temporal grounding capabil-
ities of MoChat. MoChat is a MLLM designed for motion comprehen-
sion, with capabilities that extend beyond regular motion description.
Specifically, MoChat can follow user instructions to summarize motion
sequences (Turn |), pinpoint specific body parts involved in the motion
(Turn 11), and ground the start and end frames corresponding to user
queries (Turn Il1).

HE intricate analysis and comprehension of human mo-

tion hold significant promise across various domains,
particularly in the realm of healthcare. Applications range from
enhancing patient rehabilitation protocols, refining surgical
techniques, monitoring neurological disorders, to advancing
sports medicine and telehealth services. Several commercial
platforms have incorporated skeleton-based motion tracking
into clinical practice. Kaia Health and SWORD Health pro-
vide musculoskeletal rehabilitation services using smartphone-
based or wearable-assisted pose tracking, while Reflexion
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Health’s VERA system enables camera-guided home-based
recovery after joint replacement.

Recent research has shown growing interest in skeleton-
based models for clinical and rehabilitation applications.
Marusi¢ et al. [1] used a Transformer model to classify spe-
cific exercise errors in low back pain rehabilitation, enabling
targeted feedback in remote healthcare or telerehabilitation
contexts. Martinel et al. [2] proposed SkelMamba, which de-
composes motion into spatial and temporal streams to enhance
sensitivity to motor abnormalities, further validating skeleton-
based analysis for neurological assessment. With the advent
of Multimodal Large Language Models (MLLMs) such as
Flamingo [3], GPT-4V [4], and CogVLM [5], there has been
a significant shift in the ability of Al to interpret multimodal
inputs—including human motion—within an open-vocabulary
framework. Existing works on MLLM-based human motion
understanding can be broadly classified into two categories:
the first category encompasses models focused on RGB image
and video understanding, such as VideoChat [6] and BLIP-2
[7], which are not specifically tailored for human motion un-
derstanding tasks; the second category comprises specialized
models designed explicitly to interpret human motion from
motion capture data, showcasing advanced performance in
analyzing motion, exemplified by TM2T [8] and MotionGPT
[9]. However, these models still struggle to accurately ground
specific time periods and body parts involved in motion, which
limits their performance in motion understanding tasks.

The challenge of building such motion understanding mod-
els lies in accurately modeling the relationships between
motion sequences and captions, and incorporating the temporal
dimensions essential for understanding motion. For the first
challenge, recent research [10] has demonstrated the efficacy
of pre-trained Large Language Models (LLMs) in modeling
relationships between diverse non-textual modalities and tex-
tual data. Specifically, motion sequences can be regarded as
a unique form of language. By utilizing an projector, these
sequences can be fine-tuned to facilitate the conversion of
motion information into descriptive text. Additionally, in the
action recognition field, studies [11], [12] have shown that
grouping keypoints can enhance the representation of action
features. For the second challenge, existing video captioning
models [13], [14] are capable of extracting the time intervals
in videos that correspond to specific captions. Therefore, it is
promising to train a model capable of locating the spatial and
temporal positions of specific action sequences.

In this work, we propose MoChat, a MLLM that is capable
of spatio-temporal grounding in human motion understand-
ing, facilitated by multi-turn dialogue context. To enable the
model’s understanding of motion sequences, we first pre-train
a Transformer-based [15] skeleton encoder. The keypoints are
partitioned into four groups based on the human anatomical
structure for motion encoding, enhancing the encoder’s geo-
metric perception. The resulting motion features are then con-
verted through a lightweight projector into LLM-compatible
tokens, which are subsequently combined with text instruction
tokens as input into the LLM. This allows the model to
comprehend the semantics of the motion sequence and gener-
ate descriptive text for the motion sequence. Meanwhile, by
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calculating the similarity between the LLM’s hidden states and
the motion tokens, the temporal boundaries corresponding to
the text are regressed. Additionally, to construct dialogue data
for training, we develop a pipeline for extracting timestamps
from the motion caption datasets, and create multi-turn spatial
dialogues by keyword matching. Using the resulting multi-
task instruction set, we conduct a two-stage joint training
of MoChat, which enhances its detailed action understanding
capabilities in both temporal and spatial dimensions. We
validate our model through extensive experiments on the
HumanML3D dataset [16], covering the tasks of Motion
Understanding, Spatial Limb Grounding, and Temporal Action
Grounding, evaluated using tranditional metrics and GPT-4.
The results demonstrate that MoChat achieves state-of-the-
art performance, highlighting its fine-grained spatio-temporal
motion understanding capabilities. Our contributions can be
summarized as follows:

1) We propose MoChat, a motion understanding MLLM
that comprehends motion sequences, accurately captions
the movement of specific body parts, and precisely
identifies the time boundaries corresponding to user
instructions. To the best of our knowledge, MoChat is
the first MLLM capable of spatio-temporal grounding of
actions in skeleton sequences.

2) We develop a semi-automated pipeline to extract times-
tamps from the motion caption datasets, and construct
multi-turn spatial dialogues, both of which are used to
create a multi-task instruction set for joint training.

3) Comprehensive experiments validate the advanced mo-
tion understanding capabilities of MoChat, demonstrat-
ing its spatial and temporal grounding abilities. Our
model introduces functionalities not found in existing
motion understanding models, making it more versatile
and user-friendly.

[1. RELATED WORK
A. Motion Understanding Models

Motion understanding tasks can generally be categorized
into fixed-class action recognition, which involves a predefined
set of classes, and open-vocabulary motion understanding,
which does not restrict the number of classes. In the branch
of fixed-class action recognition, numerous skeleton-based
methods have been proposed. [17], [18], [19] For instance,
ST-GCN [20] applies 3D graph convolution to human skeleton
sequences across both temporal and spatial dimensions to
extract action features. With the rise of self-supervised learning
and Transformers [15], there has been a shift towards exploring
Transformer-based self-supervised action recognition. [21],
[22] One such method is GL-Transformer [23], which con-
structs pretext tasks for amplitude and displacement recovery
using the relative and absolute positions of joints, enabling
effective representation of skeleton sequences without reliance
on action labels.

With the advancement of LLMs, open-vocabulary motion
understanding tasks have become feasible. The models typ-
ically involve a motion encoder combined with a language
model to comprehend motion sequences. A notable example
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is TM2T [8], which employs VQVAE [24] to obtain discrete
motion tokens from a codebook. These motion tokens and
their corresponding text tokens are then fed into simple
neural machine translators (NMT) for both motion-to-text
and text-to-motion conversion, enabling bidirectional match-
ing. MotionGPT [9] and AvatarGPT [25] replace NMT with
LLMs equipped with projector, fine-tuned with instructions
to enable understanding and generation of motion sequences
under various conditions. However, these approaches have
not fully harnessed the comprehension capabilities of LLMs,
primarily due to inadequate training instructions and the con-
strained representational power of the encoders. In contrast,
our proposed MoChat employs more than three instruction
sets related to temporal and spatial tasks for joint training, and
utilizes a Transformer-based skeletal encoder to extract motion
features, thereby demonstrating superior motion understanding
capabilities.

B. Vision-Language Models

The development of LLMs has significantly advanced the
field of vision-language models, with notable progress in both
image-language models [4], [26] and video-language models
[13], [27].

In the domain of image-language models, BLIP-2 [7] pre-
trains a BERT-based [28] Q-Former to align visual and tex-
tual information, using a fixed-length learnable query vector
to extract semantic information from images. However, this
approach overly compresses the information, limiting the
model’s ability to capture intricate image details. LLaVA-
1.5 [26] employs VIT [29] as the image encoder and Vicuna
[30] as the language decoder. A lightweight projector is used
to map image embeddings into the language latent space,
enabling LLMs to understand visual content. In contrast,
CogVLM [31] introduces a visual expert module that is
equivalent in size to the LLM. Yet this approach doubles the
inference parameters of the MLLM, which presents challenges
during deployment.

For video understanding, ChatUnivi follows the LLaVA’s
projector approach, also compressing information by aggre-
gating dynamic visual tokens across different frames. On the
other hand, TimeChat adopts the InstructBLIP [32] strategy
to encode temporal information through textual instructions.
Besides, it employs a sliding window to segment video frames,
encoding them with multiple Q-Formers. These approaches
enhance TimeChat’s temporal awareness but it struggles with
continuous temporal concept comprehension.

Additionally, previous work [33] has revealed significant
challenges in vision models’ handling of “geometry-aware”
semantic correspondences. For example, these models often
misinterpret spatial relationships, such as confusing the left
and right sides of the image with the left and right sides of
the objects within it, which hampers their spatial grounding
capabilities. This spatial orientation ability is crucial in the
field of sports medicine, especially in assessments such as the
asymmetry evaluation in Parkinson’s disease, where the model
needs to make accurate judgments about the left and right
limbs.

Addressing the aforementioned limitations, the MoChat
model we propose is capable of pinpointing the continuous
start and end times of actions in the temporal dimension,
while also demonstrating commendable discriminative ability
between left and right limbs in the spatial dimension. This ren-
ders the MoChat model particularly advantageous in healthcare
applications.

Il1. MOCHAT: A CHAT MLLM FOR MOTION

In this section, we introduce MoChat, a MLLM capable
of spatio-temporal grounding in human motion understanding,
facilitated by multi-turn dialogue context. The inclusion of two
novel modules, the Joints-Grouped Skeleton Encoder (JGSE)
and the Regression Head (RH), enhances MoChat’s ability to
finely understand motions and accurately ground the start and
end frames of instruction-corresponding motions. To further
empower MoChat to follow human instructions and under-
stand context in complex multi-turn, multi-task dialogues,
we construct such dialogues for spatial fine-grained motion
understanding and develop a pipeline for timestamp extraction.
Based on these dialogues, we perform a two-stage integrated
instruction tuning on a pre-trained LLM to create MoChat.

A. Overall Framework

As illustrated in Fig. 2, MoChat is composed of a spatio-
aware JGSE, a LLM equipped with projector, and a RH. Given
an input skeleton sequence with 7' frames, X, = {X;}tT:l,
the skeleton encoder JGSE first extracts motion features while
maintaining the same sequence length. Then, a projector
converts these features into motion tokens H,, which are
mapped to the language latent space. These motion tokens Hg
are concatenated with input instruction tokens H; and fed into
a LLM. The LLM’s final hidden states H,,, are then decoded
into appropriate responses, which are passed to a regression
head to obtain the corresponding timestamps simultaneously.

1) Joints-Grouped Skeleton Encoder: Previous transformer
based models typically apply positional encoding to skeleton
joints based on the specific order determined by the joint
numbering scheme. However, different skeleton types have
different joint numbering orders, which forces models to
undergo retraining when the skeleton type changes. Whereas
this approach is effective for handling specific skeleton types,
it ultimately limits the model’s ability to generalize and effec-
tively represent other skeleton types. In transformers, position
embeddings are initially designed to reinforce the positional
relationships within a sequence, making the order of the input
sequence critically important. This implies that when a frame
of skeleton joints is used as the input sequence, different orders
of the joints can significantly alter the transformer’s encoding
output.

Taking this consideration into account, we propose the
JGSE module, which builds upon [23] by incorporating a
novel position encoding strategy. For each skeleton frame
t, which contains M joints denoted as X! = {ji}M,
we partition the joints j; into four anatomical groups
g € {Arm (A),Leg (L), Trunk (Tr), Global Joint (GJ)}. The
Global Joint (GJ) is computed as a weighted combination
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Fig. 2. Overview of MoChat. Given a skeleton motion sequence as input, (a) Joints-Grouped Skeleton Encoder first extracts motion features by
grouping and embedding the joints separately. Then, (b) Projector converts these features into motion tokens Hj in the language latent space.
These motion tokens H are concatenated with instruction tokens H and input to a (c) Large Language Model (LLM). The LLM’s final hidden
states H,, are decoded into appropriate responses and passed to a (d) Regression Head to obtain the corresponding timestamps.

of all joints to capture a holistic view of the entire pose.
Each group is independently embedded to produce four group-
level embeddings: EY, EY, EL, , and Ef, ;. These are then
concatenated to form the full embedding of frame ¢:

B} = Concat(EYy, By, Bt E¢ ). (1

We denote the full sequence of per-frame embeddings as
E, = {E.}_,, where T is the number of frames. Next,
spatial and temporal position embeddings are added to E,
to produce F, enriching the embeddings with structural and
sequential context. To facilitate the exchange of information
aggregated to the joints, F is restored to the original joint
ordering via an index-based reordering operation, yielding E".
The sequence F’ is then passed to an N-layer Transformer
encoder that performs spatio-temporal attention across both
joints and frames.

This enables a two-stage encoding process, where localized
dynamics are first captured within anatomical groups, followed
by global spatiotemporal interaction over the restored joint
sequence. Unlike prior works that apply attention directly over
flat or grouped joint sequences without restoring their spatial
layout [23], [34], our approach preserves both anatomical
structure and positional semantics across stages, forming a
principled architecture for skeleton representation.

2) Language Module: Inspired by recent advances in vision-
language models such as LLaVA [26] and Chat-UniVi [27],
which insert visual tokens into the input stream of LLMs, we
adopt a similar token-level fusion strategy. However, MoChat

applies this paradigm to a different modality—3D skeleton-
based motion sequences—introducing unique challenges in
temporal encoding and multimodal alignment. Specifically, we
employ a Vicuna-based LLM equipped with a trainable linear
projector. The motion features E” extracted from the JGSE are
mapped into the language embedding space via a projection
matrix TV, resulting in a motion token sequence H, € RT*¢
that preserves temporal structure.

As illustrated in Fig. 2, we prepend a fixed system instruc-
tion to guide the LLM toward motion understanding tasks.
The user input is denoted as a variable instruction containing
a placeholder <skeleton> to indicate where motion tokens
should be inserted. The full instruction is tokenized and
embedded to obtain Hy, and the motion embeddings H, are
inserted at the placeholder position, yielding a fused sequence
that is passed to the LLM.

The final hidden states H,, from the LLM are projected
by a linear layer to produce token logits z, which are decoded
into MoChat’s response X,. During training, we apply a cross-
entropy loss between z and the shifted ground truth response
Xl

Lcg = — Z X;i(l) log o(z"), (2)
where o(+) denotes the softmax function. Notably, the inserted
skeleton tokens do not contribute to this loss, as they are
treated as context.

3) Regression Head: For precisely grounding the time
boundaries, we design a regression head, which is responsible
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for predicting the start frame IDgp¢ and the end frame IDgpq.
To compute the start and end frame IDs corresponding to
the language, we naturally consider calculating the similarity
between the motion embedding tokens H, and the LLM
hidden states H,,. In this process, the motion embedding
tokens H are fed into the regression head as Queries, while
the LLM hidden states H,, serve as Keys and Values.
We employ the scaled dot-product attention mechanism to
compute the attention weights:

T
Wross = softmax <QK ) , 3)
Vi,
where () represents the queries, K represents the keys, and dy,
is the dimension of the keys. We deliberately let the motion
embeddings H, act as Queries, because the cross-attention
output then lives in the same temporal space that the regression
head is required to predict. Keeping this alignment allows the
MLP to map the attended feature into the start and end frame
indices in a single step, without any extra pooling or coordinate
transformation.

In the resulting attention weight matrix Wepess € we
focus specifically on the weights associated with the [BOS]
token, denoted as Wy, € RT*!. The [BOS] token is an
indicative marker that signifies the beginning of a sequence
and typically carries significant contextual information about
the entire sequence. Consequently, we consider it to be of
paramount importance for representing the sequence as a
whole, and we utilize a Multi-Layer Perceptron (MLP) to
regress the start and end frame IDs:

IDs = MLP(W{ - H,), “4)

TxN
R b

where W is the transpose of weight vector Wy. Hy, € RT*P
represent the motion embedding tokens, where D is the hidden
dimension of the LLM. The output IDs is a two-element vector
corresponding to the start and end frame indices, represented
as [IDstaxta IDend}-

Then, for stable convergence, the DIoU loss [35] between
the predicted and ground truth IDs is calculated as:

d? (IDstam IDenda Ithtarn IDgrlld)
c? (IDgtart, IDend, IDgtKart’ IDe%rtld) 7

‘CDIOU =1—1[IoU— (5)
where IoU denotes the Intersection over Union. The d?(-)
term represents the squared Euclidean distance between the
center points of the predicted and ground truth intervals, while
the ¢?(-) term normalizes this distance by the square of the
length of the union interval. Subsequently, the final loss is a
combination of the cross-entropy loss and the DIoU loss:

L = Lcg + ApiouLpiou, (6)

where Apjeu is a hyperparameter that balances the two losses.

B. Data Construction

We construct motion understanding dialogues using the
motion caption dataset. Table I presents all the templates used
to construct the dialogues. We firstly design instruction tem-
plates such as “Provide a brief description of the given action
represented by the skeleton sequence” and directly use the

corresponding motion caption as the answer for constructing
basic motion understanding dialogues. To further enhance the
model’s perception of movement, we also design dialogue
templates from the temporal and spatial dimensions.

Skeleton Sequence Caption

a person bends forward and straights, and then bends
forward to touch their feet.

!

: &)

GLM-4

N

Y
Joint Coordinate Atomic Action
W Head Y-axis A person bends
iof forward.
z Head Y-axis They straighten up.
N\ /H\_, Head Y-axis Th:y behn:lhﬂ?rv:al;d
e/ = 0 touch their feet.
N A 4 N A 4

Temporal Grounding Dialogue

Q: From which frame does the motion of a person bends forward start and at which frame
does it end?

A: From frame 20 to frame 33. A person bends forward.

Q: What are the start frame ID and end frame ID of the motion of They straighten up?

A: From frame 33 to frame 65, they straighten up.

Q: From which frame does the motion of They bend forward to touch their feet start and at
which frame does it end?

A: From frame 133 to frame 153, they bend forward to touch their feet.

Fig. 3. Pipeline for constructing Temporal Grounding Dialogues. GLM-
4 splits the caption into atomic actions and identifies the corresponding
most significant joint and coordinate. The curves represent the coordi-
nates of the selected joint, with the numbers on the curves indicating
the frame IDs of the extremum points. We construct multi-turn temporal
grounding dialogues based on the final extracted results.

1) Timestamps Extraction Pipeline: As illustrated in Fig.
3, we develop a pipeline for extracting timestamps from
skeleton sequences based on textual annotations. To avoid any
potential bias in subsequent GPT-4 scoring, GLM-4 [36] is
employed to determine the atomic action referenced in the
captions and to identify one corresponding joint and axis (X
for left-right, Y for height, Z for front-back) exhibiting the
most significant variation. This process simplifies the task of
accurately assigning timestamps to each individual action. The
selection of joints and axes is further refined based on motion
data. Following the analysis from GLM-4, the selected motion
data is first smooth-filtered. Subsequently, extreme points and
the differences between them are computed, allowing for the
identification of the start and end frame IDs that correspond
to the atomic action with the maximum variation. After
extraction, a manual review is conducted, and the results are
used to construct the temporal grounding dialogues as shown
in Table I.

2) Spatial Dialogues Construction: The process for con-
structing the Spatial Dialogue is illustrated in Fig. 4. We
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Captions of Same Motion Instructions

Multi-Turn Spatial Grounding Dialogue

[ S

1. A person bends their left arm
at the elbow and raises their 3.
right arm towards it, then

person’s hand.

violin with.

. What actions is the person’s arm performing?
. Tell me about the actions performed by the

Tell me which hand this person is holding the

Q: What actions is the person’s arm performing?

A: A person bends their left arm at the elbow and
raises their right arm towards it, then lowers

lowers both arms.

Body Parts
Leg Foot
2. Someone is playing the violin. Arm Hand
Torso Head

both arms.

Q: Tell me about the actions performed by the
person’s hand.

A: A person makes a single sawing motion with
their right hand.

3. While holding their left arm Keyword Matching

in the air, a person makes a

single sawing motion with Spatial Direction

their right hand. Left Right

WV

Q: Tell me which hand this person is holding the
violin with.

A: Left.

Keyword Matching

WV

Fig. 4. The process of constructing Spatial Dialogues. We construct multi-turn spatial grounding dialogues by matching clauses within captions of
the same motion based on selected keywords, and then combining them with pre-set instruction templates.

construct multi-turn dialogues for spatial fine-grained motion
using keyword matching. First, we select keywords such as
foot, leg, hand, arm and forso based on human anatomical
structure. Next, we create instruction templates, as shown in
Table I, where the <body_part> placeholder in the instruc-
tion can be replaced with these keywords. Captions containing
the corresponding keywords are then selected as responses. For
spatial relationships, we design gap-filling dialogues based on
captions that include spatial keywords such as left and right.
Specifically, we ensure a balanced distribution of different
answers to prevent model bias. If a caption involves multiple
body parts, it is divided into separate dialogue turns, with each
turn focusing on describing the motion of a single body part,
thereby constructing a multi-turn dialogue that captures the
entire movement.

C. Training Strategy

Our training strategy consists of three stages: pre-training
the skeleton encoder, aligning motion-language embeddings,
and end-to-end fine-tuning of the model. The latter two stages
involve an integrated instruction tuning process on a pre-
trained LLM, with the JGSE module kept frozen.

To provide a clearer illustration of the three-stage training
strategy, we include a schematic diagram in Fig. 5 and a
corresponding pseudo-code summary in Algorithm 1. In Stage
0, we pre-train the JGSE skeleton encoder in an unsupervised
manner on skeleton sequences, following the data preprocess-
ing and pretext tasks outlined in [23]. Here, oy and g denote
the pseudo-labels for motion magnitude and 3D direction
constructed from the skeleton sequences, and L, Ls represent
the corresponding cross-entropy losses.

In Stage 1, we jointly train the projector and regression head
while keeping the LLM frozen. The goal is to align motion
embeddings with language embeddings using a multi-task
instruction set. We merge the instruction-response dialogues

constructed in the previous subsection and randomly sample
a batch at each iteration. Human instructions and motion
sequences are treated as loss-irrelevant inputs to the LLM,
while the dialogue responses serve as loss-relevant targets.
Autoregressive training is applied to predict the next token
in the responses. Timestamps are extracted from the ground
truth responses and used to compute the DIoU loss.

In Stage 2, we fine-tune the entire model, including the
LLM, projector and RH modules, using the same instruction
data to further enhance task performance.

IV. EXPERIMENTS
A. Dataset and Evaluation Metrics

1) Dataset: The HumanML3D dataset [16], which contains
14,616 motion sequences and 44,970 motion captions, is
used for training and evaluation. This dataset is divided into
training, validation, and test sets, with 80%, 5%, and 15%
of the data allocated to each set, respectively. We construct
the multi-task dialogues from the caption sets and use them
in conjunction with the corresponding 22-joint SMPL [37]
skeleton sequences as input for model training and evaluation.

The KIT Motion-Language (KIT-ML) dataset [38] com-
prises 3,911 motion clips (approximately 11.2hours) paired
with 6,278 free-form English sentences. Each clip contains
21-joint skeleton sequences sampled at 10 Hz. Following the
same protocol used for HumanML3D, we split the dataset into
training, validation, and test sets with an 80%, 5%, and 15%
ratio, respectively. To ensure consistency and comparability,
we use the 3D joint position sequences released by TM2T,
and apply the same filtering strategy described in their code,
which excludes clips shorter than 24 frames or longer than
200 frames.

2) Evaluation Metrics: We evaluate our model on three
tasks: Motion Understanding, Spatial Limb Grounding, and
Temporal Action Grounding. For the Motion Understanding
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TABLE |
DIALOGUE TEMPLATES.

Basic Motion Understanding Dialogues

Provide a brief description of the given action represented by the skeleton sequence.
Write a terse but informative summary of the action depicted by the skeleton sequence.
Share a concise interpretation of the action demonstrated in the skeleton sequence.
Relay a brief, clear account of the action shown in the skeleton sequence.

Render a clear and concise summary of the action sequence.

Instruction Templates Create a compact narrative representing the action portrayed in the skeleton sequence.
Give a short and clear explanation of the subsequent action depicted by the skeleton sequence.
Summarize the movement content of the action demonstrated by the skeleton sequence.
Describe the action concisely as represented in the skeleton sequence.

Offer a succinct explanation of the action presented in the skeleton sequence.

Present a compact description of the action sequence’s key features.

Q: Provide a brief description of the given action represented by the skeleton sequence.

Example A: A person walks forward, then turns around and walks backward.

Temporal Grounding Dialogues

From which frame does <motion> start and at which frame does it end?
What are the start frame ID and end frame ID of <motion>?

Please tell me when <motion> was executed in this skeleton sequence.
From <frameid.1> to <frameid_2>, <motion>.

Dialogue Templates

Q: Please tell me when A person bends forward was executed in this skeleton sequence.

Example A: From frame 20 to frame 33. A person bends forward.

Spatial Gap-filling Dialogues

Instruction Templates

<motion_-with_gap>, Complete the content in brackets with left or right.

Q: Person leans forward goes onto knees whilst first putting () hand on ground for support and stays on
Example knees. Complete the content in brackets with left or right.
A: Left.

Spatial Multi-turn Dialogues

Describe the movements of the person’s <body_part> in detail.
Please provide details about the actions of the person’s <body_part>.
What actions is the person’s <body_part> performing?

Tell me about the actions performed by the person’s <body_-part>.

Instruction Templates

Q: Tell me about the actions performed by the person’s forso.

A: The person walked backwards slowly, their forso remaining upright, before stepping forward with a forceful
Example kick.

Q: What actions is the person’s arm performing?

A: A person bends their left arm at the elbow and raises their right arm towards it, then lowers both arms.

Stage 1 & 2: Motion-Language Embedding

Stage 0: Skeleton Encoder Self-supervised Training Alignment & End-to-End Fine-tuning

. Magnitu Motion Description Output Temporal Grounding
min )\,Lg =+ A(;LJ (U) ?\
N
& Stage 2 Lce & Stage 1 Lpiou
3D Direction Hp, '
©) Large Lauguage Model —{ Regression Head )
T AN
Jomts -Grouped S Hs Hs
Skeleton Encoder gt .
H¢ Projector
Pseudo-labeling Xs Pseudo-labeling T
Tokenizer & * Joints-Grouped
Skeleton Sequence Embedding Layer Skeleton Encoder
/ ‘_-" X “ VAP VD SN X¢ T Xs
SN ) o AN R Instruction ( Skeleton Sequence )

Fig. 5. Three-Stage Training Strategy for MoChat
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Algorithm 1 Three-Stage Training Strategy
1: Input: Skeleton sequences X, instruction dialogues X; =

{(instr, resp) }
2: Output: Trained MoChat model

3: Stage 0: Skeleton Encoder Pre-training
4: for each batch X, do

5: Generate pseudo-labels oy, dg from X
6 6,0 =JGSE(X,)

7 Compute loss: L= A, - Ly + As - Ls

8 0yGsE AdamW(Vg.,GSELZ)

9: end for

10: Freeze JGSE

11: Stage 1 & 2: Instruction-Tuning with Projector and
Regression Head

12: for each batch (X, X;) do

13: H, = Projector(JGSE( X))

14: H; = Embedding(Tokenizer(X;))

15: H,, = LLM(Concat(H;, Hy))

16: X, = Decoder(H,,)

17: IDs = RH(H,,,, Hy)

18: Compute loss: £ = Lcg + Lpiou

19: mej, Oru AdamW(Vgﬂ)

20: if Stage 2 then

21: Oim <~ AdamW(VgLLM,C)
22: end if
23: end for

task, we follow the approach in [8], utilizing standard linguis-
tic metrics including BLEU [39], ROUGE [40], CIDEr [41],
and BERTScore [42]. In addition, we incorporate GPT4Score,
a recently proposed automatic evaluation metric that uses
GPT-4 as an expert judge to assess the quality of generated
responses [43]. GPT4Score belongs to the family of “learned”
or LLM-based evaluators, which aim to capture semantic
alignment and contextual consistency beyond surface-level
lexical overlap. This complements traditional metrics by better
reflecting human judgment in open-ended language generation
tasks. For the Spatial Limb Grounding task, we use accuracy
as the evaluation metric, as the spatial test set is based on gap-
filling dialogues. For the Temporal Action Grounding task,
the evaluation metric is “R@1, IoU = p,” which denotes the
percentage of retrieved frame IDs with an intersection over
union (IoU) greater than p compared to the ground truth.

B. Implementation Details

All our models employ the AdamW optimizer for training.
For the skeleton encoder pre-training, we use a batch size of
128 and train the model for 120 epochs with a learning rate
of 5x 107° and a decay rate of 0.99. The encoder consists of
a 4-layer transformer. The input sequences are padded to 500
frames with a value of 99.9. We adopt the pre-trained Vicuna-
v1.5-13B model [30] as the language foundation model. In the
stage of aligning the motion-language embeddings, we train
the projector and regression head with a batch size of 64 for

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

3 epochs, using a learning rate of 2 x 1073, The learning rate
schedule includes a warm-up ratio of 0.03, followed by cosine
annealing. The weight parameter of loss Apj,y is set to 5. In
the final stage, for fine-tuning the model end-to-end, a batch
size of 128 is applied, with training conducted over 1 epoch at
a learning rate of 2 x 10~°. The same warm-up and cosine an-
nealing schedule from the previous stage is utilized. All mod-
els are trained on 8 x Nvidia A800 GPUs. When GPU mem-
ory is insufficient, we reduce the per_device_train_batch_size
and increase the gradient_accumulation_steps while keeping
the product of per_device_train_batch_size, GPU_num, and
gradient_accumulation_steps equal to the original batch size.

C. Comparisons with State-Of-The-Art Methods

We evaluate MoChat with state-of-the-art methods on three
task including Motion Understanding, Spatial Limb Grounding
and Temporal Action Grounding. The model that employs
the original GL-Transformer skeleton Encoder (GLTE) [23] is
referred to as the baseline, with the LLM component consistent
across all models. The model that includes both the JGSE
and RH modules is referred to as MoChat-R, while the model
without the RH module is referred to as MoChat.

1) Comparisons on Motion Understanding: The Motion Un-
derstanding task involves generating a brief caption based on
a given motion sequence. We directly adopt the linguistic
results from [25] and utilize the suggested evaluation method
to assess MoChat. For a fair comparison, when assessing the
GPT4Score metric, we utilize the motion data as specified
in [9] to regenerate captions for evaluation. Models that are
not open-sourced cannot generate captions, and therefore,
no evaluation results are available for them. As shown in
Table II, the 1T symbol indicates that a higher value is better,
with bold and underline used to denote the best and second-
best results, respectively. We evaluate the performance of
MoChat and other models on the HumanML3D and KIT-ML
datasets. On the HumanML3D dataset, MoChat significantly
outperforms recent works on the Motion Understanding task
across most metrics, except for the BERTScore. AvatarGPT
achieves a higher BERTScore, possibly due to its training on
a large corpus of text generated by LLMs like ChatGPT. This
enhances its capability to produce captions with a richer vo-
cabulary and more nuanced language structure. Although the
semantic alignment with the ground truth is high, the textual
fidelity, as measured by metrics like BLEU or CIDEr, may
be significantly lower. On the KIT-ML dataset, we evaluated
TM2T using its official testing script and released weights, and
evaluated MoChat using the same evaluation implementation
to ensure a fair comparison. As shown in Table II, MoChat
outperforms TM2T across all evaluation metrics, demonstrat-
ing superior adaptability to different motion domains.

2) Comparisons on Spatial Limb Grounding: The Spatial
Limb Grounding task involves identifying which body part
is responsible for the action in a given motion sequence.
Following the data processing methods outlined in previous
sections, we constructed 2,574 gap-filling questions from
the HumanML3D test set to evaluate the model. Since cur-
rent skeleton-based motion understanding models lack spatial
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TABLE I
COMPARISON OF THE MOTION UNDERSTANDING TASK ACROSS DATASETS.

Datasets Methods BLEU@1 1t BLEU@41T ROUGE T CIDEr{t BERTScore T GPT4Score 1
TM2T [8] 48.90 7.00 38.10 16.80 32.20 -
MotionGPT [9] 48.20 12.47 37.40 29.20 32.40 5.14

HumanML3D AvatarGPT [25] 49.28 12.70 40.44 32.65 53.58 -
Baseline 59.81 19.26 45.86 45.09 43.57 5.21
MoChat (Ours) 61.75 21.60 47.59 51.57 45.59 5.99
MoChat-R (Ours) 60.06 21.30 46.08 46.57 42.56 5.25

KIT-ML TM2T [8] 35.35 5.70 33.94 12.07 38.62 4.58
MoChat (Ours) 36.89 5.89 35.34 14.13 41.18 5.23

grounding capabilities and instruction-following ability, we TABLE IV

evaluated GPT-4V, a vision-language model, for comparison.
To ensure fair comparison, we rendered the SMPL-based
3D skeleton sequences into RGB human motion videos, and
uniformly sampled 10 frames to serve as GPT-4V’s input. This
approach aligns with the input expectations of GPT-4V and
avoids introducing unfair preprocessing gaps. Skeleton-based
models such as MotionGPT were not included in this task
because they cannot follow spatial instructions nor produce
outputs suitable for metric-based evaluation. As shown in
Table III, MoChat achieves the highest accuracy of 85.70%,
demonstrating its strong capability in spatial limb grounding.

TABLE IlI
COMPARISON OF SPATIAL LIMB GROUNDING TASK ON SPATIAL TEST
SET.
Model Acc. T
GPT-4V [4] 68.02
Baseline 80.12
MoChat (Ours) 85.70
MoChat-R (Ours) 81.90

3) Comparisons on Temporal Action Grounding: The Tem-
poral Action Grounding task requires the model to accurately
locate the time range corresponding to a queried action. We
constructed a test set containing 233 samples to evaluate mod-
els’ performance. Since existing skeleton-based models do not
possess the temporal instruction-following capability needed
for this task, we rendered the motion sequences into video for-
mat and employed TimeChat, a time-sensitive video-language
model, as a comparative baseline. Although TimeChat does not
exhibit strong general-purpose instruction-following ability,
it is specifically designed to predict temporal boundaries,
making it suitable for this evaluation. In the base MoChat,
the model is trained to generate start and end frame indices in
natural language form, relying solely on the LLM’s generative
ability. In contrast, MoChat-R includes a dedicated regression
head that numerically predicts the action boundaries, yielding
higher precision. As shown in Table IV, although MoChat-R
slightly underperformed MoChat in the previous two tasks, it
outperformed other models in the Temporal Action Grounding
task.

COMPARISONS OF TEMPORAL ACTION GROUNDING TASK ON
TEMPORAL TEST SET.

Model R@1 (IoU=0.5) T R@1 (IoU=0.7) 1
TimeChat [13] 2.10 0.40
Baseline 12.45 6.87
MoChat (Ours) 19.31 5.58
MoChat-R (Ours) 21.89 12.02

D. Ablation Studies

We conduct ablation studies on different configurations,
including alternative modules, training datasets, and training
methodologies, to verify the robustness and effectiveness of
our method across various settings. The results are presented in
Table V, Table VI, and Table VII. The BMUD, SD, and TGD
indicate the instruction training sets of Basic Motion Under-
standing Dialogue, Spatial Dialogue and Temporal Grounding
Dialogue, respectively. The notation BMUD+SD+TGD or
BST signifies that the model was trained jointly on these
combined instruction sets. In the table, ’Stage 1’ refers to
the stage of aligning the motion-language embeddings, while
’Stage 2’ denotes the stage of full fine-tuning of all parameters
within the LLM. The presentation of results follows the same
conventions outlined earlier in the text.

1) Different Datasets Configurations: During the fine-tuning
of the LLM, we observe catastrophic forgetting, where the
model lost its ability to follow general instructions, a capability
typically possessed by the original chat model. Specifically, To
preserve the model’s instruction-following ability, we utilize
the Puffin dataset, a subset of processed ShareGPT data,
containing 3,000 examples, with each response generated
using GPT-4. As shown in Table V, when both the GLTE
module and the BMUD training set are utilized, not employing
the Puffin dataset leads to superior results in the metrics for
the Motion Understanding task. However, the model fails to
generate reasonable responses to other types of instructions,
such as “Who are you?”’—a question unrelated to the Motion
Understanding task—resulting in a less user-friendly model.

We also perform ablation experiments utilizing incremen-
tally combined instruction training sets across the Motion
Understanding task and the Spatial Limb Grounding task
mentioned above. In the Motion Understanding task, for
most models, the best performance is achieved by combining
BMUD, SD, and TGD in Stage 1 and Stage 2 of training, while
for models equipped with the GLTE module, the best results
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TABLE V
ABLATION STUDY ON THE MOTION UNDERSTANDING TASK ACROSS DIFFERENT MODULES AND TRAINING CONFIGS.

Modules | LoRA | Stage 1 | Stage 2 | BLEU@1 T BLEU@4 1 ROUGEt CIDErt BERTScore T GPT4Score 1
GLTE ‘ - ‘ BMUD wo Puffin ‘ 62.36 22.51 47.09 50.35 44.25 5.53
GLTE ‘ r=64 alpha=16 ‘ BMUD ‘ 37.42 7.54 32.01 21.81 38.46 5.24
GLTE - 59.85 20.80 45.46 44.88 41.63 4.74
JGSE - BMUD 61.36 21.30 46.69 47.98 44.14 5.62

JGSE+RH - 60.11 20.34 45.86 46.45 42.84 5.10
GLTE - 59.95 20.51 47.64 49.30 44.28 5.40
JGSE - BMUD+SD 60.81 20.87 47.04 50.60 44.60 5.96

JGSE+RH - 60.31 20.64 45.87 46.65 42.84 5.19

JGSE+CFT ‘ - ‘ BMUD ‘ BST ‘ 59.96 20.88 46.38 47.11 43.47 5.50
GLTE - 59.81 19.26 45.86 45.09 43.57 5.21
JGSE - 61.75 21.60 47.59 51.57 45.59 5.99

JGSE+CFT - BMUD+SD+TGD 61.16 21.49 46.75 49.27 44.12 6.05

JGSE+RH - 60.06 21.30 46.08 46.57 42.56 5.25

are obtained by combining only BMUD and SD. In Table
VI, for the Spatial Limb Grounding task, the performance of
all models is optimal when trained in conjunction with the
integration of the three training datasets. These suggest that,
in most cases, training a model with a combination of multiple
datasets constructed for different tasks can better harness the
model’s capabilities, leading to enhanced performance on the
same task.

2) Different Modules Configurations: In addition to the RH
module, we also experiment with using Custom Frame ID
Tokens (CFT) to identify the start and end frames corre-
sponding to the captions. Specifically, we introduce T" new to-
kens into the tokenizer’s vocabulary, such as <frameid_0>,
<frameid_.1>, ..., <frameid_T-1>. These tokens are then
associated with their corresponding embeddings. We add these
frame ID embeddings to the motion token embeddings, similar
to the role of position embeddings, before inserting them into
the language embeddings.

As indicated in Table V, Table VI, and Table VII, under the
condition of an equivalent training set, the model employing
the JGSE module yields the best performance for both the
Motion Understanding and Spatial Limb Grounding tasks,
suggesting that the JGSE module is well-suited for these
types of tasks. In the temporal action grounding task, the
model that combines the JGSE and RH modules achieves the
highest performance, while the model using the JGSE and
CFT modules ranks as the second-best. This demonstrates
the functional efficacy of the RH module within the context
of the temporal action grounding task. To further evaluate
our design choices, we examined an alternative attention
configuration inspired by HiLM-D [44], in which the roles
of Hy and H,, are swapped—i.e., the LLM hidden states
serve as Queries, and the motion embeddings act as key-value
inputs (denoted as RHR). As shown in Table VII, this reversal
leads to a noticeable performance drop: R@1 decreases from
21.89 to 13.70 at IoU = 0.5, and from 12.02 to 4.70 at
IoU = 0.7. We attribute this degradation to two factors: (1)
the enlarged query length imposed by H,,, which introduces
computational overhead and optimization difficulty, and (2) the
need for an additional pooling operation to collapse token-level

outputs back to the timeline, which weakens the precision of
frame-wise grounding. These results empirically confirm that
anchoring the query in the motion-temporal domain is essential
for accurate and efficient grounding.

3) Different Training Configurations: We investigate ap-
proaches to decrease resource consumption by experimenting
with LoRA. As depicted in Table V, we train and evaluate
the model using a LoRA rank of 64 and an alpha value
of 16. However, compared to the fully fine-tuned model,
although memory usage is reduced, the resultant performance
degradation is unacceptable. This suggests the necessity to
explore alternative, more efficient strategies for diminishing
memory usage.

Additionally, we explore the impact of using different
instruction training sets at different stages of instruction fine-
tuning. For instance, to reduce training time, we apply the
BMUD training set during the alignment of motion-language
embeddings and combine the BMUD, SD, and TGD training
sets during the full fine-tuning stage. As shown by the results
in Table V, Table VI, and Table VII, when the same training
set is employed across both stages, the model equipped with
the JGSE and CFT modules performs better on the Motion
Understanding and Spatial Limb Grounding tasks, but worse
on the Temporal Action Grounding task.

TABLE VI
ADDITIONAL EXPERIMENTS FOR SPATIAL LIMB GROUNDING TASK.
Modules | Stage 1 | Stage 2 | Acc. T
GLTE 77.66
JGSE BMUD+SD 81.05
JGSE+RH 79.02
JGSE+CFT | BMUD | BST | 8528
GLTE 80.12
JGSE 85.79
JGSE+CFT | BMUD+SD+TGD | o550
JGSE+RH 81.90
V. ANALYSIS
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I
| MoChat: A person squats down, then jumps up. I
I User: Please tell me the start frame and end frame of the motion of a person squats down.

MoChat: From frame 0 to frame 14, the person squats down. |
| User: From which frame does the motion of a person jumps up start and at which frame does it end? I
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Fig. 6. Attention visualization of three modules. The x-axis represents the frame ID in the time dimension of motion sequences. The y-axis in (a)
and the color in (b) and (c) both indicate the magnitude of attention weights. A brighter color signifies higher attention or activation. The y-axis in (b)
represents words and punctuation marks in the dialogue.
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part of the actual motion semantics. MoChat-R, by contrast,
accurately focuses on the relevant motion content (”jumps
forward with both arms outstretched”) without being misled by

visualization artifacts. In the third example, both models cor-

rectly describe the circular walking motion, but only MoChat-

12
TABLE VII
ADDITIONAL EXPERIMENTS FOR THE TEMPORAL ACTION GROUNDING
TASK.

Modules | Stage 1 | Stage 2 | R@1(IoU=0.5) T R@1(IoU=0.7) 1
JGSE+CFT | BMUD | BST | 20.17 9.01
JGSE 19.31 5.58
JGSE+CFT 18.03 7.30
JGSE+RHR | BMUD+SD+TGD 13.70 4.70
JGSE+RH 21.89 12.02

R explicitly captures the “clockwise” direction, aligning more
precisely with the reference caption. These examples highlight
MoChat-R’s robustness against hallucinations, especially when
compared to MotionGPT. By aligning motion understanding

A. Analysis of Learned Attention

To gain further insights into our model, we visualize the
attention weights of the JGSE, LLM, and RH modules. For the
JGSE, we compute the average self-attention weights from the
last layer of the Transformer Encoder and then visualize the
attention of the last temporal [CLS] token to other skeleton
frame tokens, as shown in Fig. 6 (a). We concatenate the
resulting motion embeddings with the language embeddings
and feed them into the LLM, then extract the attention matrix
from the first head of the first layer. The attention weights are
averaged across multiple language tokens to form complete
words, as depicted in Fig. 6 (b). For the Regression Head, we
visualize the cross-attention weights of the [BOS] token with
respect to the motion embeddings, as shown in Fig. 6 (c). The
examples in Fig. 6 illustrate that our model exhibits higher
self-attention and cross-attention weights at the corresponding
frame and word positions for the actions “squat down” and
“jump up.” This confirms the model’s effective capture of
temporal awareness and motion-caption mapping, enabling it
to successfully perform the Temporal Action Grounding task.

B. Analysis of Hallucination

When a LLM is fine-tuned on a small-scale, domain-specific
dataset, it is prone to generating inaccurate or fabricated
responses, commonly referred to as hallucinations. Therefore,
evaluating the model’s robustness to hallucinations is essen-
tial for ensuring the reliability of its outputs. Therefore, we
demonstrate the robustness of MoChat from both qualitative
and quantitative perspectives.

1) Qualitative Analysis: First, from a qualitative perspec-
tive, Table VIII presents three representative examples of
motion-captioning results to qualitatively compare our model
(MoChat-R) with MotionGPT. Each input motion sequence is
shown along with its ground truth caption (top row), the cap-
tion generated by MotionGPT (middle row), and the caption
generated by our model MoChat-R (bottom row). In the first
example, the ground truth describes a person interacting with a
handrail using their right hand. While MoChat-R successfully
captures this fine-grained action (”holding handrail with right
hand”), MotionGPT hallucinates an unrelated scene (“walking
downhill”) that is not supported by the input motion, indicating
a semantic drift from the visual evidence. In the second
example, the hallucination is subtler: MotionGPT mentions
a 7grey block,” which is not present in the ground truth
description. This reference arises from a coincidental artifact
in the 3D visualization (i.e., the rendered floor), which is not

more closely with actual observed sequences and avoiding
overfitting to visual noise or unintended cues, MoChat-R
demonstrates stronger semantic grounding and improved cap-
tion fidelity.

2) Quantitative Analysis: From a quantitative perspective,
GPT4Score has been suggested as an indicator of a model’s
tendency to hallucinate in generated outputs [45] . The final
column of Table II reports the GPT4Score for various models
on the Motion Understanding task across two datasets. On the
HumanML3D dataset, both MoChat and MoChat-R achieve
higher GPT4Scores than Baseline and MotionGPT, indicating
better alignment with human-like judgments and reduced
hallucination. Similarly, on the KIT-ML dataset, MoChat out-
performs TM2T in terms of GPT4Score, further confirming its
robustness. These results quantitatively support the conclusion
that MoChat exhibits enhanced robustness against halluci-
nations, aligning well with reference captions and avoiding
semantically inaccurate or fabricated content.

VI. DISCUSSION

1) Overall Performance Comparison: Across all three eval-
uation tasks, MoChat establishes a new performance bar
among public skeleton-based methods. On the Motion Under-
standing task, MoChat achieves the best overall performance
across all reported metrics, including BLEU-4, CIDEr, and
GPT4Score. Compared to published skeleton-based methods
such as TM2T, MotionGPT, and AvatarGPT, MoChat provides
substantial gains—e.g., +9.1 BLEU-4 and +19.0 CIDEr over
MotionGPT on HumanML3D. On KIT-ML, MoChat also
achieves higher scores than TM2T across all metrics, with a
modest gain of 0.19 BLEU-4, indicating consistent generaliza-
tion. Although AvatarGPT achieves a higher BERTScore, we
attribute this to its large-scale LLM-generated text corpus. In
contrast, MoChat emphasizes faithful captioning, as evidenced
by higher n-gram and sentence-level metrics, indicating re-
duced hallucination.

2) Spatial Reasoning Capabilities: In the Spatial Limb
Grounding task, MoChat achieves 85.7% accuracy, outper-
forming GPT-4V by 17.68%. We argue that explicit skeletal
encoding, rather than purely RGB-based vision models, en-
ables more fine-grained spatial limb grounding—an ability not
yet explored by existing vision—language systems or motion-
language models like MotionGPT.

3) Temporal Grounding Performance: MoChat’s RH module
plays a key role in Temporal Action Grounding. MoChat-
R substantially outperforms TimeChat with over 5x higher
R@1 scores under standard IoU thresholds (0.5 and 0.7),
demonstrating its superior temporal grounding ability. An
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TABLE VI
THE QUALITY RESULTS OF MOCHAT-R AND THE STATE-OF-THE-ART METHOD ON THE MOTION UNDERSTANDING TASK. THE RESULTS
DEMONSTRATE THAT OUR METHOD EXHIBITS A STRONGER PERCEPTION OF ACTION DETAILS. ITALICS IN THE TABLE INDICATE THE MATCHED

DETAILS.
50
55 60 70 80
45 0 50 90
100
60
40
Input Motion
Sequences
a person takes a step forward, moves to
Caption theor right, them continues foward with a person jumps forward once. a person walks in a circle, clockwise.
their right hand on a rail.
MotionGPT a person is walking downhill. a person jumps down a grey block. a person walks in a circle.
MoChat-R a person walks forward while holding a person jumps forward with both arms a person walks in a_clockwise circle.

handrail with right hand.

outstretched.

ablation study shows that removing RH results in a 5%
drop, highlighting the importance of regression head—a design
choice absent in existing baselines.

4) Modularity and Skeleton-Centric Design: These results
demonstrate that a modular skeleton-to-language framework
can rival or outperform complex video-centric architectures.
Unlike holistic vision models, MoChat operates on structured
joint representations, allowing for interpretable, anatomy-
aware motion analysis.

5) Training Insights: Our ablation also reveals that mixing
generic instruction tuning data (e.g., Puffin) with task-specific
motion-language corpora helps mitigate catastrophic forgetting
during Stage 2 fine-tuning. This insight may inform future
work on domain-adaptive instruction tuning for motion-based
LLMs.

VIlI. CONCLUSION

In this paper, we present MoChat, a multimodal large
language model that comprehends motion sequences, accu-
rately captions the movement of specific body parts, and
precisely identifies the time boundaries corresponding to user
instructions. To the best of our knowledge, MoChat is the
first MLLM capable of spatio-temporal grounding of actions
in single skeleton sequences.

Although MoChat has its limitations, particularly in terms
of real-time performance and resource consumption when
compared to fixed-class action recognition models, it has
carved out a new path in the field of medical applications.
Specifically, in domains such as home exercise monitoring,
neurological disorder assessment, and rehabilitation therapy,

MoChat’s ability to provide precise motion analysis is revo-
lutionary. It is essential for ensuring exercise effectiveness,
detecting early signs of neurological issues, and customiz-
ing rehabilitation programs. By introducing the capability to
interpret and ground motion sequences in a spatio-temporal
context, MoChat has not just contributed to the development
of MLLM:s but has also initiated a novel direction for research
and practical use in medical motion understanding.
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