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Abstract—Federated Learning (FL) has emerged as a promis-
ing paradigm for decentralized machine learning, where a central
server coordinates distributed clients to collaboratively train a
global model without direct access to raw data. Despite its
advantages, heterogeneous and long-tail data distributions across
clients remain a major bottleneck, particularly in IoT scenarios
with diverse devices and sensing modalities. To address these
challenges, we propose FedSM, a novel framework that integrates
multimodal semantic knowledge with balanced pseudo features
to enhance global model optimization. Unlike conventional ap-
proaches that rely on single-modal information, FedSM leverages
CLIP’s cross-modal representations and open-vocabulary priors
to guide semantic-aware data augmentation. A probabilistic
selection mechanism further refines local features by mixing them
with global prototypes, ensuring pseudo features are semantically
reliable and reducing bias caused by skewed client distributions.
Almost all computations are performed locally at the client side,
thereby alleviating server overhead and improving scalability in
resource-constrained IoT environments. Extensive experiments
on long-tail benchmarks including CIFAR-10-LT, CIFAR-100-
LT, and ImageNet-LT demonstrate the superiority of FedSM
over state-of-the-art baselines, highlighting its potential for robust
communication-efficient FL in IoT networks.

Index Terms—Federated Learning, Internet of Things, Long-
tail Distribution, Semantic-Guided Data Augmentation.

I. INTRODUCTION

REAL-world data distributions universally exhibit long-
tail characteristics [1]. Oriented towards the physical

world, data in Internet of Things (IoT) systems are inherently
highly imbalanced [2]. Furthermore, due to significant discrep-
ancies in deployment environments and functional capabilities
of edge devices, different clients often capture only partial and
limited class distributions, or even completely lack specific tail
categories. For instance, in industrial anomaly detection sce-
narios, sensors predominantly collect data representing normal

∗Feng Liang and Xiping Hu are corresponding authors.
Jingrui Zhang and Yimeng Xu are with the School of Computer Science &

Technology, Beijing Institute of Technology, Beijing 100081, China (e-mail:
jingrui1119@bit.edu.cn; xuym@bit.edu.cn;).

Shujie Li is with the Department of Electrical and Electronic Engineering
(HKU EEE), Hong Kong University, Pokfulam, Hong Kong (e-mail: shu-
jie.li@connect.hku.hk.

Feng Liang, Haihan Duan, Yanjie Dong, and Xiping Hu are with the Artifi-
cial Intelligence Research Institute, Shenzhen MSU-BIT University, Shenzhen
518172, China (e-mail: fliang, duanhaihan, yanjiedong, huxp@smbu.edu.cn).

Victor C.M. Leung is with the Artificial Intelligence Research Institute,
Shenzhen MSU-BIT University, Shenzhen 518172, China, and also with the
Department of Electrical and Computer Engineering, The University of British
Columbia, Vancouver, BC V6T 1Z4, Canada.

The source code and training scripts are available for research purposes at
https://github.com/DistriAI/FedSM.

operational states (head classes), while critical fault conditions
(tail classes) are extremely rare. This leads to severe non-
IID data imbalance. The compounded effects of long-tail data
distributions and non-IID characteristics pose a fundamental
challenge for federated learning (FL) in IoT.

Under this interplay, standard FL algorithms (e.g., Fe-
dAvg [3]) are prone to specific failure modes: 1) Local
overfitting: Local models tend to be dominated by head
classes within their respective clients [4], [5], leading to biased
decision boundaries and insufficient discriminative capability
for tail classes. 2) Aggregation bias: The dominance of head
classes exerts a cumulative and propagating effect during
federated aggregation [6]. Head classes, being prevalent across
multiple clients, dominate the gradients and continuously
accumulate advantages. Conversely, the key representations of
tail samples are ignored, forcing the decision boundary to skew
severely towards head classes. These factors ultimately result
in severe client drift, making it difficult for the global model
to converge to a stable solution that balances both majority
and minority classes.

While existing approaches attempt to address these chal-
lenges, they exhibit distinct limitations when applied to IoT
scenarios. First, re-weighting methods [4] are often ineffective
when specific categories are entirely absent from local clients,
as they rely on existing samples to adjust weights. Second,
client selection [7] strategies rely on prior knowledge of local
label distributions, which constitutes a potential privacy leak-
age risk. Third, server-side synthesis methods (e.g., CReFF [8],
CLIP2FL [9]) typically depend on uploading gradients. This
imposes a heavy computational and storage burden on the
server, which can impede the system’s ability to scale to a
large number of clients.

Consequently, there is a pressing need to address long-tail
distributions in FL with a solution that can correct long-tail
and absent-category biases, preserve privacy, and perform
locally in clients to increase scalability. Feature augmentation
strategies, such as Mixup [10], offer a potential path by in-
terpolating samples to smooth decision boundaries efficiently.
However, standard Mixup may fail in the fragmented view of
FL. As shown in Fig. 1, blindly applying Mixup in a non-IID
setting can be detrimental. For example, images of squirrels
often share background elements (like pine trees or mountains)
with train images (Fig. 1(a)). Mixing semantically unrelated
samples (e.g., squirrel and train) generates misleading noise,
limiting the classifier’s ability to refine decision boundaries.
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Fig. 1: Illustration of Mixup problems. (a) Random Mixup
ignores semantic relevance between categories and may blend
unrelated samples, such as squirrel and train, across bound-
aries, producing synthetic data that misguides boundary re-
finement. (b) When the mountain category has significantly
fewer samples or the pine tree category is absent, random
Mixup has a higher chance of generating unrepresentative or
even misleading synthetic samples.

This is exacerbated in IoT settings (Fig. 1(b)) where clients
may lack the semantic context of absent classes, leading to
distorted feature representations [11].

To address these challenges, we propose FedSM, a novel
Semantic relevance-guided Mixup framework tailored for FL
in IoT environments. As illustrated in Fig. 2, the simplified
pipeline of FedSM depicts major stages in clients, as well
as the information exchange between clients and the server.
Unlike prior works that rely on heavy server-side interventions,
FedSM empowers clients to locally rectify classifier bias using
lightweight operations. Specifically, we leverage a pre-trained
image-text-aligned model (e.g., CLIP [12]) to introduce exter-
nal semantic knowledge. By computing the semantic relevance
between categories, FedSM guides the generation of pseudo-
features in the feature space. These pseudo-features are synthe-
sized by mixing local features with global prototypes, which
are generated from class prototypes from clients. Crucially,
this enables clients to synthesize representative features for
locally absent classes by leveraging global prototypes. Each
client re-trains its classifier using the synthesized features to
mitigate bias propagation during model aggregation with the
server.

Our main contributions are summarized as follows:

• We propose FedSM, a client-centric framework designed
for the resource-constrained IoT context. It mitigates
classifier bias locally without requiring raw data sharing
or heavy server-side generative modeling.

• We introduce a semantics-guided mixup strategy that
utilizes cross-modal priors (e.g., CLIP) and probabilistic
pairing. This ensures that augmented features preserve
semantic relevance, even when local data is severely
skewed or missing categories.

• Extensive experiments on CIFAR-10-LT, CIFAR-100-LT,
and ImageNet-LT demonstrate that FedSM consistently
outperforms state-of-the-art methods in accuracy while
maintaining superior communication efficiency suitable
for IoT networks.
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Fig. 2: Illustration of major stages and the information flow
between clients and the server in FedSM, where only class-
wise prototypes and model parameters are exchanged during
federated training.

II. RELATED WORK

Long-Tail Learning: Two primary strategies dominate
long-tail learning: re-weighting and decoupled retraining.
Re-weighting assigns varying weights to samples based
on category frequency, increasing the emphasis on tail
classes to counterbalance head-class dominance. For example,
Cui et al. [4] proposed an exponential weighting method to
redistribute importance across categories. Similarly, AREA [5]
recalibrates classifier updates by estimating the effective area
in the feature space. Decoupled retraining, in contrast, sepa-
rates feature learning and classifier learning. Kang et al. [13]
introduced a two-stage training pipeline, feature learning and
classifier learning, to learn balanced classifiers. BBN [14]
further evolved this into a dual-branch architecture with shared
parameters, one branch for standard training and the other
for classifier refinement. While effective, these approaches are
designed for centralized settings and do not directly translate to
FL, where decentralized data introduces additional challenges.

Federated Learning with Heterogeneous Data: Most ex-
isting works address client-level heterogeneity in FL but often
assume class distributions are uniform, overlooking global
class imbalance. Solutions typically fall into two categories:
server-side methods that mitigate the impact of heterogene-
ity [15], and methods that preserve consistency between local
and global models [16]–[18]. For example, CCVR [19] retrains
classifiers using virtual features sampled from a Gaussian Mix-
ture Model to address heterogeneity, though its performance
deteriorates under long-tail distributions. Other methods focus
on client selection for data complementarity [20], [21], often
requiring revealing local data distribution, undermining FL’s
privacy guarantees. Our method is applicable to global class
heterogeneity and requires retraining the aggregated classifier
with locally augmented data.

Federated Learning with Long-Tail Data: When long-tail
data is distributed across clients, local models often develop
severely biased representations due to data heterogeneity.
RUCR [22] employs a Mixup-inspired strategy [10] to gener-
ate pseudo-features. CReFF [8] and CLIP2FL [9] necessitate
uploading averaged gradients of local data to the server,
which then synthesizes balanced pseudo-features for classifier
retraining. However, relying on gradient transmission rises
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the risk of privacy leakage. Specifically, regarding semantic
guidance, CLIP2FL optimizes pseudo-features on the server
side using a contrastive loss aligned with text features. This it-
erative optimization process on the server imposes a significant
computational burden, thereby impeding scalability for many
clients. Unlike these methods, FedSM adopts a prototype-
based approach. It avoids server-side gradient sharing and
heavy computations by leveraging semantic guidance locally,
ensuring robust, scalable, and privacy-preserving in long-tail
FL scenarios.

III. METHOD

A. Problem Setting

We assume a standard FL setup with K clients holding
non-IID, long-tail data. The goal is to train a shared feature
extractor and classifier that generalizes well despite client drift
and label imbalance. Let Dk denote the local dataset on client
k, with size nk = |Dk|. The global dataset is defined as D =⋃K

k=1 Dk and consists of C classes. For class c, let Dk
c =

{(x, y) ∈ Dk | y = c} be the subset of samples distributed to
client k, and nk

c = |Dk
c | its size. The total number of samples

in class c across all clients is Nc =
∑K

k=1 n
k
c . The global

data follows a long-tail distribution, i.e., when sorted by class
frequency such that N1 ≥ N2 ≥ · · · ≥ NC , we have N1 ≫
NC .

The standard FL process involves: 1) The server broadcasts
the global model to clients; 2) Clients update local models
using private data; 3) Locally updated models are sent back
to the server for aggregation; This cycle repeats until con-
vergence. Our objective is to learn a high-performance global
model for image classification under the constraint of long-tail
distributed data in the FL setting.

B. Overview of FedSM

FedSM follows the standard federated learning process: 1)
The server distributes the global model to each client; 2)
Clients update their local models using private data; 3) Clients
send the updated models back, and the server aggregates them.
These steps repeat until convergence. This study primarily
focuses on the client-side training with three phases: a) local
training, b) label semantics relevance-guided feature mixup,
and c) classifier retraining, as shown in Fig. 3.

First, in the local training phase, we employ knowledge
distillation between the CLIP image encoder and our local
feature extractor. This step aims at regularizing the local
feature space learned by different clients reside within a shared
and comparable semantic embedding space. By transferring
the teacher’s generalized visual representations, we prevent
the local model from overfitting to the sparse tail classes. This
ensures that the local features serve as the viable inputs for
the subsequent mixup process.

Next, in the semantic relevance-guided mixup phase, we
aim to generate balanced pseudo-features to compensate for
distributional gaps within each client. We use a image-text-
aligned model (e.g., the text tower in CLIP) to compute label
text semantic relevance, based on which we probabilistically
select sample pairs for mixup with global prototypes. This
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Fig. 3: Overview of the FedSM framework. The client side
consists of three key phases: a) local training, b) label
relevance-guided feature mixup, and c) classifier retraining.

probabilistic selection, rather than a deterministic top-1 se-
lection, helps alleviate relevance estimate bias and increase
robustness. This relevance-guided mixup ensures that gener-
ated pseudo-features remain semantically consistent and do
not overlap with unrelated classes.

Finally, the classifier is retrained using the synthesized
balanced pseudo-features to correct the decision boundaries,
mitigating the head-class bias before aggregation. Motivated
by prior work [8] showing that classification bias mainly
stems from the classifier rather than the feature extractor, we
retrain only the classifier after several local training rounds
to correct these biases. The server side remains unchanged
during retraining, executing standard FL procedures without
any additional modifications.

The causal chain for solving the long-tail problem in FL by
these phases is summarized as follows. Knowledge distillation
provides the foundation for a semantically consistent feature
space. The probabilistic semantic relevance estimation en-
hances cross-domain robustness, while retraining with mixed-
up features based on global prototypes directly addresses
classifier bias.

C. Local Training

In the local training phase, our goal is to enhance the
model’s representation capability of aligning image features
with text semantics by transferring knowledge from a pre-
trained image-text-aligned model. To this end, we adopt
a knowledge distillation strategy within a teacher–student

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2026.3652363

© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 iv

framework, where the image-text-aligned model serves as the
teacher, guiding the local model (student) during learning. This
image-text-aligned model is required to have strong semantic
understanding of both visual and textual modalities with two
encoders: an image encoder EncI and a text encoder EncT .
Given an input image x and its corresponding text label l, we
compute the visual feature as hv = Linear(EncI(x)) ∈ Rd

and the text feature as ht = Linear′(EncT (l)) ∈ Rd, where d
is the feature dimension. The image-text-aligned model output
logits are calculated as:

q = [⟨hv, ht1⟩, ⟨hv, ht2⟩, . . . , ⟨hv, htC ⟩],

where ⟨·, ·⟩ denotes cosine similarity between visual and
textual features across all C categories. In client k, The local
model prediction p = wk(x) is obtained by forwarding x
through the local model wk. The total training loss combines
supervised and distillation objectives:

L = LCE(y, p) + LKL(q ∥ p) (1)

where y is the category label of p, LCE is the cross-entropy
loss, and LKL denotes the Kullback–Leibler divergence [23].

After local updates in the t-th round, clients in a randomly
selected subset U t upload their models wk to the server.
Following standard FL aggregation, the server computes the
updated global model as a weighted average of client models,
given by:

w =
∑
k∈Ut

|Dk|∑
k∈Ut |Dk|

wk. (2)

D. Image Feature Mixup Guided by Label Relevance

Feature mixup. Sample-level augmentation techniques
such as MixUp [10] and CutMix [24] are simple yet effective
for mitigating long-tail distributions. However, these meth-
ods originally operate at the pixel level and do not exploit
higher-level feature-space mixing, limiting their applicability
in FL, where decentralized data and privacy constraints make
raw image sharing impractical. To overcome this limitation,
FedSM performs mixup in the feature space, leveraging both
global category prototypes and local features. This approach
maintains a global perspective to reduce bias while preserv-
ing client-specific characteristics and adhering to FL privacy
principles.

The global prototype for category c is the aggregation of
local category prototypes from all clients, which is defined as:

zglobal
c =

1

Nc

K∑
k=1

fk
c · nk

c , fk
c =

1

nk
c

nk
c∑

i=1

g(xk
c,i), (3)

where g(·) is the local feature extractor, xk
c,i is the i-th sample

of category c on client k, and fk
c is the client-level category

prototype uploaded to the server.
A pseudo feature rkc for category c on client k is generated

by mixing the global prototype of category c with a local
feature from the most semantically relevant category v:

rkc = (1− λ) · zkv + λ · zglobal
c , (4)

where zkv is a local feature of category v, and λ is a mixup
coefficient that balances the importance of generalization
(global prototype) and personalization (local feature).

From a broader perspective, λ serves as a trade-off co-
efficient for different long-tail scenarios. When λ is small,
the pseudo-features generated via mixup are dominated by
potentially biased local features, hindering their ability to
effectively correct the decision boundary. Whereas, a larger
λ ensures that global prototypes occupy a dominant position
in the pseudo-feature generation process, thereby providing
more stable guidance for the model’s discriminative direction.
In scenarios characterized by highly long-tail distributions,
appropriately increasing λ can strengthen the reliance on
global prototypes, enabling them to serve as stable feature
anchors. In contrast, in scenarios when local data is relatively
sufficient and long-tail distributions are moderate, a lower λ
can preserve more local feature information, thereby avoiding
the issue of feature homogeneity caused by excessive reliance
on global prototypes.

Category relevance estimation. This step selects the most
semantically relevant category v for a target category c. Unlike
prior methods that rely on co-occurrence or feature similarity,
FedSM leverages label semantics via a pretrained image-text-
aligned model.

Specifically, FedSM uses the model’s text encoder to esti-
mate the similarity between categories based solely on their
textual labels. Each label li is converted into a descriptive
phrasei (e.g., “a photo of {label}”). The semantic relevance
score αi,j between categories i and j is computed as:

αi,j = Nonlinear(⟨EncT (phrasei), EncT (phrasej)⟩), (5)

where ⟨·, ·⟩ denotes similarity between encoded text features,
default to cosine, and Nonlinear refers to an optional trans-
formation (e.g., softmax).

The resulting relevance score αi,j is interpreted as the
probability of selecting a local feature zkj from category j
in Eq. 4, ensuring semantic consistency in pair selection. In
FedSM, each client ranks its available categories based on
relevance scores and assigns higher selection probabilities to
more relevant categories, promoting semantically meaningful
mixup and generating balanced pseudo data.

This probabilistic strategy offers two key advantages: 1) It
mitigates domain shift between the pretrained model and the
downstream FL task by introducing controlled randomness,
reducing over-reliance on potentially misaligned semantic pri-
ors. 2) It enhances mixup diversity and robustness by allowing
feature synthesis from a broader pool of relevant categories,
especially beneficial when the top-matching categories are
absent from a client’s local dataset.

Moreover, applying a nonlinear transformation to the sim-
ilarity scores allows fine-grained control over the distribution
sharpness, amplifying confidence in top choices or smoothing
across multiple candidates, further improving flexibility and
stability in pseudo feature generation.

Each client generates S semantics-guided pseudo-features
per category. Let rkc,i denote the i-th pseudo feature for
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Algorithm 1 FedSM Training at Communication Round t

Input: Global model wt = {f t, gt}
Output: Updated global model wt+1 = {f t+1, gt+1}

1: Server-side:
2: Randomly sample a set of online clients U t

3: Send global model wt to all k ∈ U t

4: Client-side (for each k ∈ U t):
5: Update local model using Eq. 1

/* generate pseudo-features for classifier retraining */
6: if t ≥ total_rounds−retraining_rounds then
7: Compute category relevance via Eq. 5
8: Obtain global prototypes via Eq. 3
9: Generate pseudo feature set via Eq. 4

10: Retrain classifier using pseudo-features
11: Set local model wt+1

k = {f t+1
k , gt+1

k }
12: end if
13: Send updated local model wt+1

k to server
14: Server-side:
15: Aggregate received models via Eq. 2

category c on client k, then the complete pseudo feature set
on client k is defined as:

Rk = {rkc,i | c ∈ C, i = 1, . . . , S}. (6)

Classifier Retraining. After local training, client k refines
its classifier gk using the generated pseudo feature set Rk. This
retraining step aims to mitigate classification bias and further
enhance robustness to domain shift by leveraging semantically
enriched, balanced synthetic data. The loss function is the
cross entropy loss:

LCE(g
k;Rk) =

1

|Rk|
∑

(r,y)∈Rk

−y log
(
σ(gk(r))

)
, (7)

where σ denotes the softmax function.
This lightweight retraining phase is performed only on the

classifier gk, making it computationally efficient while improv-
ing model generalization. The final model wk = {fk, gk},
consisting of the locally updated feature extractor and the
calibrated classifier, is then uploaded to the server for aggre-
gation. Unlike prior methods [8], [9] that retrain local models
at every FL communication round, FedSM performs classifier
retraining only in the final few rounds, significantly reducing
computational overhead.

Overall, the global model is iteratively updated through
client-side local training and classifier retraining with
semantics-guided mixed-up features, as outlined in Algo-
rithm 1.

E. Discussion

We discuss FedSM’s characteristics in the following aspects:
privacy risk, computational cost, and the scenario gap in the
long-tail and feature drift problems.

Privacy Risk. FedSM is practically privacy-preserving.
FedSM’s prototypes contain only aggregated abstract repre-
sentations, carrying significantly lower privacy leakage risks

compared to gradient-based methods. Although there is a the-
oretical possibility of decoding or reconstructing feature pro-
totypes, such attacks typically require the attacker to possess
the complete feature encoder architecture and simultaneously
train a decoder model, which poses a high barrier in practical
settings.

Computational Cost. FedSM exhibits low server-side com-
putational cost, which is advantageous in large-scale scenarios.
In addition to the necessary model aggregation in common
FL frameworks, FedSM only performs the aggregation and
broadcast of class-wise prototypes on the server. This aggre-
gation operation is only on simple vectors of class prototypes,
rendering its computational load negligible. Furthermore, clas-
sifier retraining is performed at the client side, avoiding addi-
tional computational burdens on the server. As a comparison,
CLIP2FL requires iterative gradient optimization of pseudo-
features on the server, involving contrastive learning losses
related to text semantics, which incurs a high centralized
computational cost, especially for a large scale of clients.
The client-centric design of FedSM can effectively distribute
this pseudo-feature generation workload across clients while
preserving greater privacy.

Long-tail and Feature Drift. Long-tail distribution (la-
bel skew) and feature drift represent two distinct yet inter-
connected dimensions of data heterogeneity. Long-tail dis-
tribution emphasizes that different clients possess varying
class proportions. For example, in IoT environments, data
representing normal operations constitutes the vast majority,
while faults or accidents (tail classes) are minorities. Whereas,
feature drift highlights that the representation of the same
category varies across different clients, such as variations
in sensor types, camera viewpoints, or lighting conditions.
While both frequently occur in IoT scenarios, they present
distinct challenges. This paper primarily focuses on the long-
tail distribution issue. However, because FedSM leverages pre-
trained models to guide high-level semantic encoding, the
encoded features tend to be more robust across diverse devices
and conditions. By encouraging local models to align with a
shared semantic space, FedSM may mitigate the effects of
device-related feature perturbations in feature drift scenarios.

IV. EVALUATION

A. Experimental Setup and Implementation Details

Datasets. We evaluate FedSM on three long-tail bench-
marks: CIFAR-10-LT [8], CIFAR-100-LT [8], and ImageNet-
LT [29]. CIFAR-10-LT and CIFAR-100-LT are derived from
CIFAR-10 and CIFAR-100 [30], respectively, by sampling
with varying imbalance factors (IF): 100, 50, and 10. An
imbalance factor of 100 means the most frequent class has
100 times more samples than the least frequent one. ImageNet-
LT is a long-tail subset of ImageNet [31], containing 115.8K
images across 1000 categories. It has a predefined distribution
with up to 1280 images in head classes and as few as five
in tail classes. To simulate non-IID data across clients, we
adopt the Dirichlet distribution, which allows us to simulate
varying degrees of non-IID scenarios by controlling a concen-
tration parameter α. This setup enables a more comprehensive
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TABLE I: Top-1 accuracy(%) of different FL algorithms on the CIFAR-10-LT and CIFAR-100-LT datasets. “I”, “II”, and “III”
represent types of heterogeneity-oriented, imbalance-oriented, and heterogeneity and imbalance-oriented, respectively.

Type Method CIFAR-10-LT CIFAR-100-LT
IF=100 IF=50 IF=10 IF=100 IF=50 IF=10

I

FedAvg [3] 57.3 ± 1.7 61.0 ± 3.6 72.0 ± 3.6 31.6 ± 0.7 35.9 ± 0.3 47.6 ± 0.8
FedAvgM [25] 56.7 ± 1.6 61.2 ± 4.0 71.9 ± 4.0 31.7 ± 0.7 36.3 ± 0.5 47.3 ± 0.9
FedProx [26] 54.4 ± 2.2 60.4 ± 2.5 69.8 ± 2.9 30.4 ± 0.4 34.3 ± 0.4 43.9 ± 0.4
FedNova [27] 56.5 ± 1.6 61.0 ± 4.4 72.6 ± 5.1 31.6 ± 1.0 36.1 ± 0.3 47.5 ± 0.6
CCVR [19] 60.4 ± 2.2 68.2 ± 2.0 74.4 ± 2.3 25.1 ± 0.9 27.1 ± 2.0 36.0 ± 1.0
MOON [28] 57.5 ± 1.1 61.6 ± 3.6 73.0 ± 3.2 31.9 ± 0.9 36.1 ± 0.3 47.5 ± 0.8

II Fed-Focal [6] 52.9 ± 1.9 58.1 ± 2.6 74.9 ± 5.5 30.3 ± 0.7 34.6 ± 0.9 41.4 ± 0.8
RatioLoss [7] 56.0 ± 2.2 65.0 ± 2.7 72.8 ± 5.4 31.7 ± 0.9 34.7 ± 0.9 42.6 ± 1.1

III
CReFF [8] 69.9 ± 1.2 72.6 ± 1.1 79.6 ± 1.5 26.9 ± 0.7 30.3 ± 0.6 37.8 ± 1.0
RUCR [22] 61.3 ± 0.8 65.1 ± 3.4 79.3 ± 1.2 33.7 ± 0.1 37.4 ± 0.0 48.8 ± 0.2

CLIP2FL [9] 71.2 ± 0.8 72.6 ± 1.8 80.7 ± 1.7 36.0 ± 0.7 39.6 ± 0.6 47.2 ± 0.5

FedSM+MetaCLIP (Ours) 70.4 ± 0.7 71.6 ± 0.9 80.9 ± 1.1 35.6 ± 0.7 39.5 ± 0.5 50.2 ± 0.8
FedSM+CLIP (Ours) 72.2 ± 0.9 74.4 ± 1.0 82.2 ± 0.5 37.8 ± 0.5 41.2 ± 0.4 50.7 ± 0.7

evaluation of our method’s robustness for long-tail datasets
under different non-IID scenarios and is consistent with related
SOTA studies (e.g., CReFF [8], CLIP2FL [9]), ensuring a
fair and rigorous comparison. For datasets CIFAR-10-LT and
CIFAR-100-LT, we use α = 0.5, following CReFF [8]. For
ImageNet-LT, we use α = 0.1 to introduce higher data
heterogeneity among clients.

Implementation and Setup. For CIFAR-10-LT and
CIFAR-100-LT, we use ResNet-8 [32] as the feature extractor,
and for the larger ImageNet-LT dataset, we adopt ResNet-
50 [32]. We use CLIP [12] or MetaCLIP [33] as the image-
text-aligned model. These models have been pretrained on rich
image and text data from diverse domains and can be used to
verify FedSM’s performance under domain shifts. To align
with the image-text-aligned model, a projection layer is added
atop the base model to match the feature dimension. Both its
text and image encoders are frozen during training. For the
CLIP image encoder, we use the ViT-B/32 variant, consistent
with the setup in CLIP2FL [9]. CLIP is the default choice
for other experiments if the image-text-aligned model is not
specifically mentioned. FedSM and other baseline methods are
implemented within the FLGO framework [34], [35] relying
on PyTorch. Each experiment is repeated five times with
different random seeds for CIFAR-10-LT and CIFAR-100-LT,
and three times for ImageNet-LT. All experiments are run on
a single node equipped with four NVIDIA A800 GPUs.

Training. By default, we simulate 20 clients, with 40%
randomly selected for participation in each communication
round. The classifier is retrained using 100 pseudo-features
per class, following the common practice in recent works [8],
[9]. We use the standard cross-entropy loss and run totally 200
communication rounds with 10 epochs per round. The baseline
methods [8], [9] retrain local models at every round, while
FedSM performs classifier retraining with pseudo-features
only in the final 50 rounds. All experiments use Stochastic
Gradient Descent (SGD) with a learning rate of 0.1 for
local training and 0.01 for classifier retraining. The mixup
coefficient λ in Eq. 3 is chosen randomly from range 0.65
to 0.90 and batch size is 32 across all datasets. Rather than

fixing λ to a deterministic value, this stochastic perturbation
from a value range not only enhances the diversity of synthetic
features but also prevents the model from overfitting to a
single interpolation ratio, thereby contributing to improved
generalization capabilities.

B. Results

We compare FedSM against a range of FL algorithms
that address data heterogeneity at varying levels. General
approaches [3], [19], [25]–[28] target standard heterogeneous
settings, while others [6], [7] specifically focus on class
imbalance. The most relevant to our work are recent state-
of-the-art (SOTA) methods [8], [9], [22] designed for FL with
long-tail data.

a) Results on CIFAR-10/100-LT.: Table I reports the
classification accuracy of various FL algorithms on CIFAR-10-
LT and CIFAR-100-LT. FedSM with CLIP consistently outper-
forms all baselines across different IFs, with performance im-
provement ranging from 1.0 to 1.9 percentage points compared
to second best results. Performance gains on CIFAR-100-LT
are generally slightly higher than on CIFAR-10-LT. A possible
reason is that CIFAR-100-LT has finer-grained labels, which
enhances the effect of semantic guidance for feature mixup in
FedSM. When CLIP is replaced by MetaCLIP, representing a
specific domain shift, the results remain close to those obtained
with CLIP and are competitive with other baseline results. This
demonstrates FedSM’s robustness to domain shift between the
pretrained model and training data.

b) Results on ImageNet-LT.: For fine-grained analysis,
we divide categories of the full ImageNet-LT dataset into three
groups based on samples amounts: many (>100 samples),
medium (20–100 samples), and few (<20 samples). Table II
shows the results of the overall dataset along with divided
groups. Despite the substantial imbalance in ImageNet-LT,
FedSM with CLIP and MetaCLIP achieves the overall accu-
racy of 30.9% and 29.3%, an improvement of 3.4 and 1.8
percentage points compared to the previous SOTA (27.5%).
Even with fewer retraining rounds, our method matches or
surpasses others, particularly on tail classes (Few) with the
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TABLE II: Top-1 accuracy(%) of different federated learning algorithms on the ImageNet-LT.

Type Method Overall Divided Categories
Many Medium Few

Heterogeneity-
oriented

FedAvg [3] 23.0 ± 2.0 34.9 ± 1.2 19.1 ± 1.0 7.0 ± 1.3
FedAvgM [25] 22.5 ± 2.2 33.9 ± 1.4 18.7 ± 1.4 6.0 ± 1.2
FedProx [26] 22.9 ± 1.6 35.0 ± 1.8 17.1 ± 1.2 7.0 ± 0.9
FedNova [27] 24.7 ± 2.0 35.4 ± 0.8 20.6 ± 1.6 11.6 ± 0.5
CCVR [19] 25.7 ± 1.5 36.8 ± 1.5 20.6 ± 1.6 10.0 ± 0.9
MOON [28] 24.1 ± 1.1 34.7 ± 0.5 20.4 ± 0.9 9.9 ± 1.2

Imbalance-
oriented

Fed-Focal [6] 21.5± 1.8 31.0 ± 1.6 15.8 ± 1.6 6.8 ± 1.3
RatioLoss [7] 25.0 ± 3.0 35.9 ± 2.3 18.9 ± 1.9 7.4 ± 1.4

Heterogeneity and
Imbalanced

CReFF [8] 19.7 ± 1.5 34.8 ± 2.1 18.7 ± 1.8 8.3 ± 0.7
CLIP2FL [9] 27.5 ± 1.0 35.7 ± 2.1 26.9 ± 1.8 23.4 ± 1.4

FedSM+MetaCLIP (Ours) 29.3 ± 0.4 37.0 ± 0.6 28.4 ± 1.5 22.1 ± 1.3
FedSM+CLIP (Ours) 30.9 ± 0.2 38.0 ± 0.3 27.4 ± 0.1 23.0 ± 0.2

TABLE III: Accuracy (%) of mixup strategies guided by
probabilistic (P , ours) semantic relevance, deterministic (D)
semantic relevance, and random category without using se-
mantic relevance.

FedSM CIFAR-10 CIFAR-100
P D w/o SR P D w/o SR

λ =0.20 71.4 68.1 68.8 36.0 34.6 35.3
λ =0.35 71.6 68.3 68.9 36.0 34.8 35.3
λ =0.50 71.7 69.0 69.1 36.7 34.9 35.5
λ =0.65 72.1 70.0 70.3 37.4 35.3 35.9
λ =0.80 72.2 70.8 71.2 38.0 35.5 36.1

accuracy of 23.0%. Note that FedSM achieves this perfor-
mance efficiently with classifier retraining only in the final
50 communication rounds (50 epochs each), while CLIP2FL
requires gradient matching for 300 epochs in every round
throughput the training (totally 200 rounds). These results
highlight FedSM’s computational efficiency and robustness
under severely skewed data.

C. Ablation Study

Effect of Probabilistic Semantic Relevance. We explore
the effectiveness of probabilistic semantic relevance-guided
mixup. The synthesized pseudo-feature is a result of using
the probabilistic selection of a relevant category j guided by
αi,j and the balance coefficient λ. We conduct experiments to
explore the compound effect of varying λ across probabilistic
and deterministic approaches. Table III presents a performance
comparison under various λ settings across three strategies:
mixup guided by probabilistic semantic relevance, determin-
istic semantic relevance, and randomly without semantic rel-
evance guidance.

Results show that the probabilistic approach consistently
outperforms the deterministic mechanism under various λ
settings. It is noteworthy that the deterministic modeling
approach performs even worse than the randomized approach
in all cases. This can be attributed to the fact that the
deterministic mechanism mixes features exclusively from a
single selected class, resulting in rigid feature combinations.
This lack of diversity limits its capacity to calibrate decision

TABLE IV: Accuracy (%) on CIFAR-100-LT with and without
fine-tuning.

FedSM IF=100 IF=50 IF=10

w/o fine-tuning 37.8 41.2 50.7
w/ fine-tuning 38.4 42.4 52.0

boundaries across classes. In contrast, the probabilistic ap-
proach generates diverse pseudo-features, introducing richer
semantic perturbations. This facilitates the learning of more
robust decision boundaries, ultimately yielding superior over-
all performance. Additionally, the performance consistently
improves as λ increases across all approaches, validating the
effectiveness of global prototypes in rectifying classifier bias.

Effect of Fine-tuning. To investigate FedSM potential
ability to mitigate the domain shift problem, we explore the
effect of fine-tuning during local training. Instead of freezing
the image encoder of CLIP, we optimize it by the loss of
Margin Metric Softmax [36], which adds an adaptive margin
for each negative feature pair between the image and text en-
coders. Since fine-tuning the teacher model during knowledge
distillation based on logits between the teacher and student
models can lead to unstable training, we further replace the
Kullback–Leibler divergence between logits in Eq. 1 with the
mean square error between features to optimize the feature
extractor, following the practice suggested by FitNets [37].
Table IV shows the results on CIFAR-100-LT, a dataset with
finer-grained categories and is more likely subject to problems
caused by domain shift. After fine-tuning, FedSM delivered
notably improved accuracy across different imbalance factors,
e.g., an extra 1.3 percentage point improvement when IF=10.
This fine-tuning helps quickly refine pretrained image feature
spaces to align with out-of-domain training data, enhancing
the results of data augmentation based on semantic relevance.

Effect of Distance Functions on Relevance Calculation.
We evaluate the impact of different similarity distance func-
tions used in relevance score calculation, as defined in Eq. 5.
Experiments on CIFAR-10-LT are conducted under various IF
settings, comparing four common distance functions: cosine
similarity, L2 distance, L1 distance, and dot product. As shown
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Fig. 4: Results on CIFAR-10-LT under different similarity
functions for relevance score.
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Fig. 5: Results in various classifier retraining settings on
CIFAR-100-LT with IF=10.

in Fig. 4, cosine similarity yields the best performance across
all IF levels, consistent with its widespread use in semantic
similarity tasks. L1 and L2 distances yield lower accuracy,
especially under high imbalance (IF=100), suggesting that
they are less robust in capturing meaningful semantic re-
lationships in sparse or skewed feature distributions. These
results highlight the importance of selecting an appropriate
similarity function to guide relevance-aware mixup in long-
tail FL scenarios.

Effect of the Number of Pseudo-features. We evaluate
FedSM’s performance on CIFAR-100-LT with IF=10 when
generating varying numbers of pseudo-features for classifier
retraining, as shown in Fig. 5a. FedSM consistently benefits
from increasing the number of pseudo-features, with each
additional 50 samples yielding an approximate 1 percentage
point improvement in accuracy. This gain is not solely due
to quantity, but also to more mixup operations that encourage
a more uniform and balanced feature distribution, helping to
reduce classifier bias and refine decision boundaries.

Interestingly, CLIP2FL and RUCR also exhibit slight perfor-
mance gains with more pseudo-features, albeit at a lower speed
than FedSM. In contrast, CReFF shows declining accuracy as
the number increases. A possible explanation is that CReFF re-
lies on average gradient matching to optimize pseudo-features,
which may yield lower-quality samples. Additionally, increas-
ing the pseudo feature count in CReFF likely exacerbates the
optimization burden, hindering effective classifier retraining.

Effect of the Number of Classifier Retraining Epochs.
We examine the impact of varying classifier retraining epochs
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Fig. 6: Impact of varying the number of active clients.

TABLE V: Accuracy (%) under varying hyperparameter λ.

CIFAR-10-LT CIFAR-100-LT
IF=100 IF=50 IF=10 IF=100 IF=50 IF=10

λ=0.20 71.4 73.6 81.2 36.0 39.9 50.0
λ=0.35 71.6 74.2 81.5 36.0 39.9 50.2
λ=0.50 71.7 74.6 81.5 36.0 39.9 50.0
λ=0.65 72.1 75.0 81.8 37.4 41.1 49.1
λ=0.80 72.2 75.1 81.9 38.0 41.5 49.4

on CIFAR-100 with IF=10. As shown in Fig. 5b, FedSM
achieves comparable performance using only 50 retraining
rounds with 50 epochs each, limited to the final phase of
training. In contrast, prior methods [8], [9] perform retraining
in every communication round with 300 epochs, leading to
significantly higher computational costs. This highlights the
efficiency of our approach in reducing training overhead
without sacrificing accuracy.

Effect of the Number of Active Clients. We evaluate
FedSM’s performance with different numbers of active clients,
a key factor in FL. As shown in Fig. 6, FedSM demonstrates
strong robustness to the number of active clients. Perfor-
mance on CIFAR-10 exhibits slightly more fluctuation than
on CIFAR-100, possibly due to less distinct label semantics in
CIFAR-10. Across all settings, lower imbalance (i.e., smaller
IF values) consistently yields higher accuracy, which aligns
with trends observed in the main results.

Hyperparameter for Pseudo Feature Mixup. We study the
effect of the mixup coefficient λ in Eq. 4, which controls the
interpolation between the global prototype and local feature.
As shown in Table V, FedSM performs robustly across a
range of λ values from 0.20 to 0.80 with a gap of 0.15. This
is because, in long-tail non-IID scenarios, local features zkv
from tail classes are often sparse and noisy. Relying more on
the global prototype zglobalc (i.e., a larger λ) ensures that the
generated pseudo-features are closer to the true class centers,
thereby providing more stable guidance for classifier boundary
refinement.

V. CONCLUSION

In this paper, we propose FedSM, a semantics-guided mixup
framework designed to alleviate classification bias in federated
learning with long-tail and heterogeneous data distributions.
By leveraging a pretrained image–text-aligned model, FedSM
performs feature-level mixup between local features and global
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prototypes, generating balanced pseudo-features that facilitate
few-round classifier retraining. This semantic-aware design
enables effective mitigation of domain shift while preserving
privacy, as all procedures are executed locally on IoT devices
without exposing raw data. Moreover, the lightweight client-
side operations reduce server burden, making the framework
highly suitable for large-scale IoT networks with constrained
communication and computational resources. Extensive ex-
periments validate that FedSM achieves superior accuracy,
robustness against domain shifts, and efficiency compared to
prior methods, highlighting its potential for enabling reliable
and communication-efficient federated learning in IoT envi-
ronments.
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