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Abstract

Federated learning (FL) enables collaborative training of a001
global model in the centralized server with data from mul-002
tiple parties while preserving privacy. However, data het-003
erogeneity can significantly degrade the performance of the004
global model when each party uses datasets from different005
sources to train a local model. Among various cases of data006
heterogeneity, feature drift, feature space difference among007
parties, is prevalent in real-life data but remains largely un-008
explored. Feature drift can distract feature extraction learn-009
ing in clients and thus lead to poor feature extraction and010
classification performance. To tackle the problem of fea-011
ture drift in FL, we propose FedPall, an FL framework that012
utilizes prototype-based adversarial learning to unify fea-013
ture spaces and collaborative learning to reinforce class in-014
formation within the features. Moreover, FedPall leverages015
mixed features generated from global prototypes and local016
features to enhance the global classifier with classification-017
relevant information from a global perspective. Evalua-018
tion results on three representative feature-drifted datasets019
demonstrate FedPall’s consistently superior performance in020
classification with feature-drifted data in the FL scenario. 1021

022

1. Introduction023

Today, in computer vision, researchers often utilize large024
amounts of data from various parties to improve the accu-025
racy of algorithms. However, this raises concerns, such as026
the potential for user privacy leakage caused by sharing pri-027
vate data [11]. Federated learning (FL) [20] is proposed as a028
privacy-preserving distributed learning paradigm to address029
these challenges. In the FL paradigm, each party maintains030
a local client model and collaborates with others to train a031
global model on the server without sharing the original data,032
effectively protecting user privacy.033

Particularly, the FL paradigm faces challenges from data034

1The code is attached in the supplementary material for review.
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Figure 1. We show a schematic diagram of feature drift and use
different techniques to drive feature distribution to update in dif-
ferent directions.

heterogeneity [13]. Due to the limited local view of each 035
client, data distribution discrepancies arise across clients 036
(commonly referred to as the non-independent and identi- 037
cally distributed data issue, or non-independent and iden- 038
tically distributed(non-IID) data issue), which can increase 039
generalization error for local models and degrade the per- 040
formance of the globally aggregated model [9]. Although 041
recent work on non-IID data in FL primarily addresses is- 042
sues such as stability, client drift, and heterogeneous label 043
distributions among clients [10, 17, 30], feature drift(i.e., 044
variations in feature distributions across clients) is a preva- 045
lent yet underexplored challenge in FL. As shown in Fig. 1a, 046
feature drift refers to the phenomenon where samples of 047
the same class exhibit different feature distributions across 048
different clients due to variations in data collection meth- 049
ods, devices, and other factors. This leads to ambiguous 050
decision boundaries, severely impacting the classification 051
performance of federated learning models. However, tra- 052
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ditional classification losses (e.g., cross-entropy loss (CE053
loss), as shown in Fig. 1b) do not account for feature drift.054
As a result, the collaborative effect among different clients055
causes the feature space of the same-class samples to influ-056
ence each other, leading to only slight or even no clearer057
distinction between decision boundaries for various classes058
within the same client. As illustrated in Fig. 1c, decentral-059
ization is a common approach to addressing feature drift,060
which involves ignoring inter-client differences to make the061
feature space of same-class samples across different clients062
more clustered. In feature drift scenarios, some state-of-063
the-art algorithms do not explore the role of loss functions064
but instead optimize local update algorithms to achieve de-065
centralization. For example, FedBN [18] compresses the066
feature space across clients by adding batch normalization067
layers to local models. Some methods [1, 33] align feature068
spaces by sharing partial data for synthetic data augmenta-069
tion. Additionally, ADCOL sends raw features to the server070
to update a amplifier and uses the Kullback-Leibler (KL)071
loss function to achieve decentralization. However, these072
methods have drawbacks: on the one hand, they may lead073
to loss of class information, and on the other hand, they pose074
potential risks of privacy leakage.075

To tackle the above challenge, we propose FedPall, a076
novel prototype-based adversarial and collaborative learn-077
ing framework for FL with feature drift. FedPall applies078
adversarial learning between clients and the server to unify079
feature spaces, as well as collaborative learning across080
clients to enhance global decision boundaries. Specifi-081
cally, FedPall uses adversarial learning to train a feature082
enhancer and uses KL divergence to align heterogeneous083
feature spaces between clients, while using prototype con-084
trastive loss to reinforce class information (see Fig. 1d). Fi-085
nally, adversarially aligned features are securely mixed with086
the global prototypes and uploaded to the server, where a087
global-view classifier is trained to enhance overall perfor-088
mance. Our contributions are summarized as follows:089

• We propose a novel FL framework, FedPall, to address090
the feature drift problem. FedPall introduces adversar-091
ial learning between clients and the server, and collab-092
orative learning among clients aiming to project feature093
representations into a unified feature space and reinforce094
the intrinsic class information. This approach effectively095
mitigates the feature drift problem in FL settings.096

• We develop a technical strategy that hierarchically in-097
tegrates the global prototypes with local features to or-098
chestrate client-server collaboration. The mixed proto-099
type features are then used to train a global classifier,100
which induces the classifier to distill discriminative pat-101
terns through cross-client knowledge consolidation.102

• Empirical evaluation on three typical feature-drifted103
benchmarks demonstrates that our proposed method104
achieves state-of-the-art classification accuracy.105

2. Related Work 106

In FL settings, the limited local view of each client directly 107
induces the feature drift problem. Due to data-distribution 108
differences, the same class label may have different fea- 109
ture representations, resulting in poor generalization of lo- 110
cal models. Existing studies addressing this problem gener- 111
ally adopt two dominant paradigms: discriminative feature 112
alignment and contrastive prototype learning. 113

Some studies have sought to address the problem of fea- 114
ture drift in FL by focusing on aligning feature represen- 115
tations. FRAug [1] employs data augmentation to gener- 116
ate synthetic embeddings encompassing global information 117
and client-specific characteristics. FedSea [25] aims to mit- 118
igate feature drift by aligning feature distributions to trans- 119
form raw features into an IID format. FedCiR [19] ad- 120
dresses feature drift by maximizing mutual information be- 121
tween representations and labels while minimizing mutual 122
information between client-specific representations condi- 123
tioned on labels. Similarly, MOON [15] encourages lo- 124
cal models to align with the global feature distribution by 125
constraining updates based on the similarity between local 126
and global representations. Unlike traditional aggregation- 127
based frameworks, ADCOL [16] employs adversarial learn- 128
ing to enforce a unified representation distribution across 129
clients, thereby alleviating inter-client feature drift. How- 130
ever, it adopts a weak form of collaboration that does not 131
address class boundaries from a global view. Moreover, its 132
adversarial mechanism of directly transmitting features to 133
the server introduces potential privacy risks. Our method 134
adopts stronger collaborative learning to enhance global 135
class boundaries and privacy-preserving adversarial learn- 136
ing to alleviate inter-client feature drift. 137

Some studies have focused on prototype-driven feder- 138
ated learning paradigms. Prototypes can compact feature 139
embeddings through prototype abstraction, reducing com- 140
munication bandwidth and preserving data privacy [29]. 141
Tan et al. [26, 27] proposed a supervised contrastive loss 142
function leveraging both global and local prototypes to min- 143
imize the distance between feature representations and class 144
prototypes, thereby addressing data heterogeneity. How- 145
ever, using the average feature as a prototype for each 146
class may overlook intra-class variability within the fea- 147
ture space. To address this, MP-FedCL [23] utilizes clus- 148
tering on the client side to generate multiple prototypes per 149
class, capturing intra-class variation and mitigating feature 150
drift arising from these differences. Following the effort of 151
MP-FedCL, FedPLVM [28] further enhances local training 152
through a two-stage clustering process between clients and 153
the server, incorporating an α-sparsity prototype loss func- 154
tion to optimize performance. By leveraging the privacy- 155
preserving nature of prototypes, this approach effectively 156
addresses privacy and security concerns while using global 157
prototypes to strengthen class-specific information within 158

2



ICCV
#13196

ICCV
#13196

ICCV 2025 Submission #13196. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

feature representations. In the FedPall framework, we en-159
hance the collaboration between the client and the server160
through global prototypes. With the server’s assistance, the161
client gains access to global category information, which162
helps to bring similar category data closer together and push163
data from different categories farther apart. We also use164
mixed features with global category information to enhance165
the global classifier.166

3. Method167

3.1. Problem Description168

We define feature drift as follows: Given a dataset D with169
features x and labels y, while the conditional distribu-170
tion Pi(x|y) differs across clients, the marginal distribution171
P (y) remains the same. This means that the same label172
may have significantly different features across clients. For173
example, due to variations in environment, geographic lo-174
cation, and cultural differences, the structural features of175
houses can vary widely.176

With feature drift in FL, our goal is to optimize each177
client’s personalized model loss while leveraging the po-178
tential performance gains from collaborative learning across179
clients [32]. In the FedPall framework, there are a total of180
N clients, each client n has a private dataset Dn. Based on181
this goal, we formulate the overall optimization objective of182
the FedPall framework as follows:183

min
θ1,θ2,...,θN∈Rd1

F (θ) :=
1

N

N∑
n=1

fn(θn), (1)184

where fn represents the expected loss obtained from client185
n using the global model parameters under the dataset Dn,186
and θi represents the local model parameters of client i.187

3.2. FedPall Framework188

Existing approaches to addressing the feature drift problem189
in FL typically focus on either collaborative learning or ad-190
versarial learning in isolation. This can result in models that191
either fail to adequately capture class-related information in192
the feature representations or exhibit persistent discrepan-193
cies in feature distributions across clients. To address these194
limitations, we propose integrating both adversarial and col-195
laborative learning to effectively mitigate feature drift in FL196
settings. In this section, we present the FedPall framework197
by elaborating on its adversarial and collaborative learn-198
ing. The framework of the overall approach is shown in199
Fig. 2a. It is structured into four key procedures: generat-200
ing global prototypes, training local models, training global201
model, and decentralizing global classifier.202

We define certain model symbols here that will be used203
in this section. The local model F (·) consists of two compo-204
nents, a feature extractor G(·) (e.g., Resnet50 [6] for image205
data) and a classifier H(·). We use a multilayer perceptron206

(MLP) as our Amplifier, and except for the output layer, the 207
number of nodes in other layers is consistent with that of 208
the classifier. 209

3.2.1. Generating Global Prototypes 210

Several studies [21, 26] suggest that category-centered pro- 211
totypes are a privacy-friendly form of global knowledge. 212
We leverage collaboration between clients to aggregate and 213
generate global prototypes. Typically, the class prototype 214
for each category is represented by the mean of the features 215
for that category. The local prototype for the k-th category 216
on client n is defined as: 217

ckn =
1

Nk
n

∑
(x,y)∈Dk

n

Gn(x), (2) 218

where Dk
n and Nk

n represent the data samples and the num- 219
ber of samples for the k-th category on client n, respec- 220
tively. 221

Gathering all the local prototypes together forms a local 222
prototype set, which can be defined as: 223

On = {c1n, c2n, ..., cKn } ∈ RK×d, (3) 224

where K represents the number of categories owned by 225
each client, and d denotes the output feature dimension. 226

Since we are only addressing the problem of feature drift, 227
all clients have the same number of categories. Upon re- 228
ceiving the local prototype set and local label proportions 229
N = {{Nk

n}Kk=1|n ∈ A} sent by client set A, the server 230
integrates the local prototypes from all clients to form the 231
global prototypes, 232

Gk =
∑
n

Nk
n∑

n N
k
n

ckn (4) 233

The global prototypes set can be represented as 234

G = [G1, . . . ,Gk, . . . ,GK ] (5) 235

Next, the server sends the global prototype set G to each 236
client to guide local model training. You can refer to Fig. 2b 237
for a better understanding of the generation of the global 238
prototype. 239

3.2.2. Training Local Models 240

The goal of this module is to train an effective feature en- 241
coder that maps the raw data from different clients into a 242
unified feature space, where the feature distributions are 243
aligned and the class-related information is enhanced. 244

As mentioned earlier, due to feature drift, training a lo- 245
cal classifier alone is not sufficient for accurately classifying 246
data with feature drift. To address this, we apply adversar- 247
ial learning to train a feature encoder. Specifically, we use 248
a global amplifier, trained on the server, which amplifies 249
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Figure 2. The FedPall framework and detailed phases

the heterogeneous information in the features from different250
clients. At the client’s side, we apply the amplifier and use251
Kullback-Leibler (KL) divergence to reduce the heteroge-252
neous information in the features, thereby creating an adver-253
sarial learning setup between the client and server. The ob-254
jective is to improve the generalization ability of the feature255
encoders across clients while minimizing the client-specific256
heterogeneity in the feature representations. Let x(i) denote257
the i-th dimension of vector x, the KL divergence is calcu-258
lated as:259

LKL =
∑

(x,y)∈Dn

DKL(An(G(x))||[ 1
N

]N )

=
∑

(x,y)∈Dn

N∑
i

An(G(x))(i)logNAn(G(x))(i).

(6)260

where, x(i) denotes the i-th dimenson of vector x, An(·)261
represents the amplifier of the n-th client, DKL(P ||Q) rep-262
resents the KL divergence of P and Q.263

After adversarial learning, although the feature represen-264
tations of different clients are mapped to similar feature dis-265
tributions, the class-related information may be blurred. To266
address this problem, we propose using contrastive learning267
to reinforce the class-related information within the feature268
encoder. To prevent information leakage, we enable col-269
laboration between the global prototypes (server-side) and270
local features (client-side). Specifically, we employ the In-271
foNCE loss to minimize the distance between local features272

and their corresponding global prototypes, while maximiz- 273
ing the distance between local features and global proto- 274
types of other classes. This approach strengthens the class- 275
related representation within the feature encoder. The for- 276
mula for the global-prototype contrastive loss is as follows: 277

LinfoNCE =
∑

(x,y)∈Dn

−log
exp(sim(G(x),Gy)/τ)∑

yα∈A(y) exp(sim(x,G(yα))/τ)
,

(7) 278
where A(y) := {yα ∈ [1, |G|] : yα ̸= y} is the set of labels 279
distinct from y, τ is the temperature to adjust the tolerance 280
for feature difference, and sim(x, y) represents the cosine 281
similarity of x and y. 282

We combine adversarial learning and collaborative learn- 283
ing to address the feature drift problem in FL. By leveraging 284
the two loss functions defined above, along with the local 285
cross-entropy loss, we progressively train the local feature 286
encoder at each client. The overall loss function for each 287
client is as follows: 288

L = LCE(x,y)∼Dn
(F (x), y) + µLKL + δLinfoNCE , (8) 289

where µ denotes the weight of the LKL divergence and 290
LCE denotes the cross-entropy loss. 291

The local model F (·) is updated using Eq. (8). For a 292
comprehensive visualization of the global prototype gener- 293
ation process, consult Fig. 2c where the workflow is sys- 294
tematically delineated. 295
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3.2.3. Training Global Model296

Due to the limited local view of clients, it is difficult for297
them to train an accurate classifier. Therefore, we upload298
the encrypted mixed features to the server to train a classi-299
fier with a global perspective. Additionally, we leverage the300
global view from the server to train an amplifier used for301
adversarial learning with the clients.302

For each feature zkn of class k on client n, we obtain a303
prototype mixed feature by performing a weighted fusion304
with the corresponding global prototype:305

rkn = α× zkn + (1− α)× Gk, (9)306

where zkn ∈ Zk
n = {zi,kn }Si=1. α ∼ U(uf , ur) are the mix307

parameters, with uf and ud representing two hyperparam-308
eters of a uniform distribution. S represents the number of309
samples of the k-th category in client n.310

Building on this, we employ a Bernoulli mask to further311
reduce the risk of privacy leakage,312

Mask = {X1, X2, . . . , Xd},
Xi ∼ Bernoulli (β) , ∀i ∈ [1, d],

(10)313

The final output of the prototype mixing mechanism is de-314
rived by selecting the mixed feature elements based on the315
noise mask:316

r̃kn = Mask ⊙ rkn, (11)317

where ⊙ is an element-wise and operator.318
After generating the prototype mixed features, the client319

will form the set DRL
(R, Y ) using the prototype mixed fea-320

ture set Rn = {r̃1n, ..., r̃kn, ..., r̃Kn } ∈ RK×d and the corre-321
sponding label set Y , which will be sent to the server.322

The server updates the global amplifier A using the323
mixed feature sets from each client along with the corre-324
sponding client IDs. Specifically, we first construct the325
dataset for training the amplifier, denoted as DRI

(R, I),326
where I represents the client IDs. The amplifier is then up-327
dated by minimizing the empirical risk:328

E(R,I)∼DRI
ℓCE(R, I). (12)329

At the same time, the server updates the global classifier330
Cg using the mixed prototype features and the class labels331
from the clients Y . This is done by minimizing the empiri-332
cal risk:333

E(R,Y )∼DRL
ℓCE(R, Y ). (13)334

We show the training process of the global classifier335
in Fig. 1c.336

3.2.4. Decentralizing Global Classifier337

Finally, we deploy the global classifier Cg to each client to338
replace the original local classifiers Cc. The purpose of this339
is to obtain a more generalized classifier that can alleviate340

the feature drift problem. To allow the global classifier to 341
adapt to the personalized characteristics of local data, we 342
retrain it on the client’s local data, thereby enhancing the 343
classifier’s accuracy and improving its performance on in- 344
dividual client data distributions. And you can understand 345
the deployment method of the server-side global classifier 346
through Fig. 2e. 347

4. Discussion 348

Computational Cost Compared to the standard federated 349
learning model, our adversarial collaborative learning ap- 350
proach introduces an amplifier and a global classifier. How- 351
ever, the number of parameters for these two components is 352
much smaller than those of the other components. In our 353
design, both the amplifier and the classifier are designed 354
as three-layer MLPs. Compared to the feature extractor 355
(with a total of 23.5M parameters), the classifier (with a 356
total of 1.32M parameters) and the amplifier (with a total of 357
1.33M parameters) account for approximately 5.61% and 358
5.59%, respectively. Moreover, the client-side amplifier re- 359
mains frozen, functioning exclusively in the forward pass 360
for loss calculation while being disabled during backpropa- 361
gation cycles. 362

Communication Efficiency Compared to traditional fed- 363
erated learning methods like FedAvg, which sends local 364
model parameters to the server, we use prototype-mixed 365
features as the communication medium. Assume consis- 366
tent tensor representations between model parameters and 367
prototype-fused features, with the local model’s feature ex- 368
tractor specifically employing a ResNet-50 architecture that 369
produces 2048-dimensional embeddings. During the up- 370
loading process, our approach requires all clients to upload 371
an average of 12,122 prototype-mixed features. In contrast, 372
with FedAvg, each client needs to upload approximately 373
24.8 million parameters of model parameters. During the 374
downloading process, our method only uses the parameters 375
of the amplifier and global classifier as the communication 376
content, which accounts for about 10.6% of FedAvg’s com- 377
munication cost (refer to the above paragraph). 378

Privacy Preserving Research has shown that the mutual 379
information between input data and extracted latent fea- 380
tures remains statistically insignificant [24]. Our framework 381
implements a two-stage protection mechanism: The com- 382
munication medium (mixed prototype features) first applies 383
dual obfuscation: (1) prototype-based feature blending fol- 384
lowed by (2) stochastic Bernoulli masking. This layered 385
approach establishes information-theoretic security guaran- 386
tees against model inversion attacks.furthermore, the class 387
prototypes retain only a minimal amount of class infor- 388
mation, exhibiting strong privacy-preserving properties. In 389
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contrast to ADCOL [16], which simply sends raw features390
to the server, our prototype-mixed feature structure incorpo-391
rates this dual encryption process, further enhancing privacy392
protection. This integration means that through the shared393
amplifier mechanism, feature spaces from different clients394
become intrinsically unified, ultimately diminishing privacy395
leakage risks.396

Limitation While our framework currently specializes in397
image recognition tasks, its extension to NLP or time-series398
analysis remains unexplored. Successful cross-domain399
adaptation requires two key developments: (1) establishing400
domain-specific feature representations and prototype defi-401
nitions, and (2) redesigning loss functions according to task402
semantics. For NLP applications, this implies reconfiguring403
the standard classification paradigm into autoregressive pre-404
diction frameworks. Architectural adaptations are equally405
crucial - particularly the incorporation of RNN-based struc-406
tures with inherent temporal modeling capabilities for se-407
quential data processing.408

5. Experiments409

5.1. Experimental Setup410

Datasets We conduct experiments on three publicly avail-411
able feature drift datasets: Digits [31], Office-10 [5], and412
PACS [14]. Specifically, (1) the Digits dataset consists of413
five different domain sources: MNIST [12], SCHN [22],414
USPS [8], SynthDigits [4], and MNIST-M [4]; (2) the415
Office-10 dataset includes four distinct sources: Amazon,416
Caltech, DSLR, and WebCam; (3) the PACS dataset con-417
sists of four sources: Art Painting, Cartoon, Photo, and418
Sketch. Datasets Office-10 and PACS are real-world im-419
ages from natural scenes, which inherently exhibit feature420
drift due to the diversity of their sources. Digits is a digit421
recognition dataset. In line with [18, 27], we do not use the422
entire Digits dataset for feature transformation experiments423
but rather a subset of 10% of the data. For datasets Office-424
10 and PACS, we used all of the datasets for the experiment.425
Additionally, we split each dataset into training and testing426
sets with an 8:2 ratio.427

Baselines We compare FedPall with ten baselines, in-428
cluding SingSet (where each client independently trains a429
model). FedAvg [20] is the most classic federated learn-430
ing algorithm, while FedProx [17], PerFedAvg [3], and431
FedRep [2] are personalized federated learning methods.432
FedBN [18], ADCOL [16], MOON [15] and FedProto [26]433
are personalized federated learning algorithms for cross-434
domain learning, all of which address the issue of non-IID435
features to some extent. In addition, we explored the ability436
of RUCR [7] to solve the feature drift problem.437

Model and Hyper-parameter Setup All algorithms use 438
the same local model architecture to ensure a fair compar- 439
ison. The local model consists of three components: (1) a 440
feature extractor based on ResNet50 (without the classifier 441
layer); (2) a classifier, which is a three-layer MLP with a 442
hidden layer size of 512. The amplifier is also a three-layer 443
MLP, with an input dimension of 2048 and a hidden layer 444
size of 512. The output dimensions of both the predictor 445
and the amplifier are adjusted according to the number of 446
categories and data sources in the dataset. By default, the 447
number of clients is the same as the number of data sources 448
in the dataset, with each client owning a data source. The 449
output dimension of the predictor is aligned with the num- 450
ber of categories in the dataset. For the Digits dataset, we 451
set the number of local training epochs to 5. For the Office- 452
10 and PACS datasets, we set the number of local training 453
epochs to 10. The global training epochs are set to 10 for all 454
datasets. We use the SGD optimizer with a learning rate of 455
0.01 for model training. Due to varying degrees of feature 456
drift in the dataset itself, our algorithm makes slight adjust- 457
ments to the hyperparameter values in Eq. (8). However, to 458
ensure fair comparison, the loss value common to all algo- 459
rithms uses the same hyperparameter value. Except for the 460
digits dataset, for which the values of mu and delta are set to 461
0.7 and 0.3 respectively, the values of mu and delta are set 462
to 0.1 for all other datasets. All experiments are conducted 463
on an NVIDIA GeForce RTX 4090 GPU. By default, for 464
each result, we run the three experiments with different ran- 465
dom seeds for data processing and initialization of model 466
parameters. 467

5.2. Experimental Analysis 468

We conduct the evaluation on three publicly available 469
feature-drifted datasets (Digits, Office-10, and PACS) and 470
compare the performance of the FedPall framework with 471
classical and state-of-the-art baselines. As shown in Ta- 472
ble 1, our proposed framework achieves state-of-the-art ac- 473
curacy on all three datasets. 474

We first discuss the experimental results based on each 475
individual dataset. On the Office-10 dataset, the overall 476
accuracy of the FedPall framework surpasses that of the 477
second-best method, ADCOL, by approximately 3 percent- 478
age points. By examining the accuracy across the four 479
sub-datasets (as for the four clients), FedPall improves 480
the overall performance by significantly elevating the per- 481
formance of some sub-datasets while not decreasing that 482
of others. On the Digits dataset, it is evident that Fed- 483
Pall outperforms all other models, achieving an accuracy 484
that is approximately 1.1 percentage points higher than the 485
second-best model, FedBN. Moreover, FedPall surpasses 486
the popular baseline with a comparative idea, ADCOL, 487
by about 2.2 percentage points. The Digits dataset con- 488
tains images that are relatively easy to classify, and the de- 489
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SingleSet FedAvg FedProx PerfedAvg FedRep FedBN MOON FedProto ADCOL RUCR ours(FedPall)
amazon 73.96(2.71) 56.94(2.46) 56.60(2.57) 57.12(2.17) 45.31(1.88) 40.80(15.75) 51.74(16.11) 69.44(2.10) 73.26(4.37) 52.08(8.53) 72.92(1.38)
caltech 44.74(3.15) 46.52(4.63) 50.96(5.19) 50.81(1.56) 38.37(4.92) 33.93(6.48) 41.33(13.62) 39.41(6.32) 37.19(1.68) 44.30(1.03) 44.74(8.74)

dslr 60.22(6.72) 30.11(4.93) 33.33(10.37) 31.18(4.93) 34.41(4.93) 38.71(3.23) 24.73(1.86) 65.59(4.93) 76.34(4.93) 30.11(6.72) 77.42(3.23)
webcam 71.26(2.63) 37.93(6.22) 43.68(7.18) 47.13(7.77) 55.75(2.63) 30.46(6.05) 33.33(12.71) 71.26(4.34) 71.26(2.63) 37.36(4.98) 74.71(1.00)

Office-10

avg 62.54(0.38) 42.88(1.18) 46.14(2.64) 46.56(2.89) 43.46(1.34) 35.97(6.54) 37.78(10.89) 61.43(1.74) 64.51(1.79) 40.96(0.61) 67.45(2.69)
MNIST 95.51(0.22) 92.86(2.24) 91.79(2.95) 90.10(4.79) 86.54(6.08) 96.69(0.11) 93.41(1.14) 96.37(0.50) 96.30(0.41) 92.59(1.96) 97.24(0.42)
SVHN 71.09(0.91) 77.39(0.21) 76.92(0.28) 75.64(0.42) 67.17(1.73) 79.44(0.25) 79.63(0.75) 72.50(0.29) 75.12(2.08) 77.94(0.25) 78.00(0.36)
USPS 86.40(0.27) 89.25(0.89) 89.23(1.41) 88.69(0.69) 89.95(2.95) 90.07(0.54) 81.76(0.72) 87.01(0.83) 86.72(1.25) 88.85(2.39) 87.28(1.29)

SynthDigits 95.15(0.13) 95.49(0.07) 95.39(0.12) 95.00(0.16) 94.21(0.78) 95.61(0.06) 96.63(0.23) 95.29(0.61) 96.43(0.29) 95.98(0.17) 95.26(0.43)
MNIST-M 76.56(0.40) 73.81(1.45) 74.02(1.49) 73.21(0.78) 69.11(0.94) 76.25(0.39) 72.16(0.92) 78.27(1.20) 78.28(4.39) 72.65(0.37) 85.90(1.39)

Digits

avg 84.94(0.06) 85.76(0.86) 85.47(1.14) 84.53(1.31) 81.40(2.47) 87.61(0.11) 84.72(0.60) 85.89(0.23) 86.57(1.32) 85.60(0.87) 88.74(0.15)
art painting 33.58(0.84) 25.79(1.93) 24.33(4.14) 26.52(2.19) 26.93(3.32) 36.66(1.76) 30.58(1.97) 32.68(0.70) 34.87(1.15) 24.66(1.10) 35.60(0.56)

cartoon 58.53(2.48) 45.36(2.29) 51.38(0.56) 48.27(1.24) 44.37(2.09) 55.63(1.95) 51.52(1.78) 57.25(1.51) 57.18(0.80) 47.49(3.32) 59.73(2.34)
photo 63.01(1.93) 48.66(3.08) 49.55(1.95) 46.88(2.64) 41.94(2.76) 66.07(1.04) 53.02(3.34) 64.00(1.34) 62.12(1.98) 47.48(6.22) 64.69(1.29)
sketch 79.70(0.13) 49.03(1.98) 40.74(1.54) 44.42(3.77) 40.48(1.25) 79.57(1.65) 55.12(1.37) 79.61(0.81) 80.12(1.03) 42.17(2.40) 82.23(0.71)

PACS

avg 58.70(1.23) 42.21(1.59) 41.50(1.82) 41.52(1.90) 38.43(1.11) 59.48(1.44) 47.56(0.88) 58.39(0.25) 58.57(0.58) 40.45(1.98) 60.56(0.36)

Table 1. The top-1 accuracy (%) of each algorithm on each sub-dataset of the Office-10, Digits, and PACS datasets is compared, along with
the average top-1 accuracy across all sub-datasets. The mean and standard deviation (std) from three random trials (using different random
seeds, with other experimental settings remaining the same) are reported. The highest accuracy for each dataset is highlighted in bold, and
the second-highest accuracy is underlined.

gree of feature drift is smaller compared to the Office-10490
dataset. All baseline models achieve reasonably good accu-491
racy on this dataset. Specifically, adversarial learning helps492
mitigate the heterogeneous information in the MNIST-M493
client. In addition, collaborative learning allows the local494
model on the MNIST-M client to benefit from the knowl-495
edge shared by other clients and the server. Similarly, our496
algorithm demonstrates strong performance on the PACS497
dataset, achieving an overall accuracy that is approximately498
1.1 percentage points higher than the second-highest re-499
sult produced by FedBN. FedPall achieves the highest or500
second-highest accuracy across all sub-datasets.501

We also discuss the performance of FedPall as compared502
to other state-of-the-art baselines across all three datasets.503
The average accuracy of FedPall consistently outperforms504
that of ADCOL in all three datasets, achieving an increase505
ranging from about 1.1 to 2.9 percentage points. In addi-506
tion, even though FedBN can achieve accuracy comparable507
to our method on datasets Digits and PACS, our method508
outperforms it significantly by 31.5 percentage points on509
datasets Office-10. As mentioned earlier, the Office-10510
dataset comes from real-world data, where feature drift is511
particularly prominent, and there is also a significant distri-512
bution difference between the training and testing sets, lead-513
ing to the suboptimal performance of the FedBN method on514
this dataset. In contrast, the special design incorporating515
both adversarial and collaborative learning in FedPall en-516
ables it to adapt well to the Office-10 dataset.517

5.3. Ablation Study518

Effect of loss combination In this section, we analyze the519
impact of KL loss and InfoNCE loss on the final model per-520
formance when training the local feature encoder. We con-521
ducted several ablation experiments, specifically setting up522
three comparative groups: removing both KL loss and In-523
foNCE loss simultaneously, removing only KL loss, and re-524
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Figure 3. We evaluate the top-1 accuracy averaged over all clients
using different loss function combinations on different datasets.

moving only InfoNCE loss. As shown in Figure 3, the algo- 525
rithm performs best when all losses are retained, which val- 526
idates the reliability of the loss combination we designed. 527

Specifically, on the Office-10 dataset, our method out- 528
performs the model using only CE loss by nearly 4 per- 529
centage points. Interestingly, the combination of CE loss 530
and InfoNCE loss performs even worse than using only CE 531
loss. This suggests that, when the feature drift problem 532
is more pronounced, reinforcing the category information 533
solely through InfoNCE loss may exacerbate the feature 534
drift. Although the combination of CE loss and KL loss 535
performs better than using CE loss alone on the Office-10 536
dataset, its performance on the PACS dataset falls below 537
expectations (even lower than CE loss), indicating that the 538
model’s robustness is weaker when using CE and KL losses 539
together. This can lead to some loss of category informa- 540
tion, and while the model can adapt to some heterogeneous 541
datasets, it remains highly unstable. 542

To analyze the effects of KL and InfoNCE losses on fea- 543
ture distributions, we visualize categorical feature distribu- 544
tions across clients in the Office-10 dataset. For clarity, 545
Figure 4 displays randomly sampled data points through 546
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Figure 4. We plotted the feature distribution of different categories
under different clients, corresponding to the four loss combination
strategies of Fig. 3

t-SNE projections. The CE-loss-only model exhibits poor547
feature drift handling, particularly in Client 1 where deci-548
sion boundaries remain ill-defined. Introducing InfoNCE549
loss improves intra-client class separation compared to CE550
loss alone, though inter-client feature drift persists, caus-551
ing ambiguous global boundaries. The CE+KL combina-552
tion demonstrates dual effects: KL loss effectively reduces553
inter-client distance for identical classes, achieving clearer554
global boundaries. However, this comes at the cost of com-555
pressed intra-class spacing in Client 1, manifested as over-556
lapping clusters and outlier formation that impair local clas-557
sification. Our unified loss function synergistically coordi-558
nates these effects: KL loss aligns cross-client same-class559
features while CE and InfoNCE losses jointly enforce intra-560
client class separation. This balanced interaction produces561
well-separated yet compact clusters, ultimately enhancing562
classification performance and validating our algorithm’s563
efficacy.564

In summary, our method not only outperforms other565
combinations in the simple handwritten digit recognition566
scenario but also demonstrates superior performance on567
other real-world datasets. This highlights the robustness568
and generalization capability of the loss combination we de-569
signed.570

Comparison of different classifier replacement methods.571
We validate the global classifier’s effectiveness via an abla-572
tion study by removing it. Results in Figure 5 reveal that573
while the Digits dataset’s simplicity causes slightly lower574
accuracy for the global classifier than local classifiers on575
some sub-datasets (panel 5a), it outperforms the non-global-576
classifier baseline across multiple sub-datasets. Notably,577
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Figure 5. Comparison of accuracy with and without training the
global classifier on the three datasets.

our method achieves 3.61% higher accuracy on MNIST-M, 578
yielding superior overall performance. Panels 5b and 5c 579
highlight the global classifier’s advantages for datasets with 580
significant feature drift: It surpasses the baseline on nearly 581
all Office-10 sub-datasets (panel 5b), achieving 49.33% ac- 582
curacy (15.55% improvement) on Caltech. For PACS (panel 583
5c), it consistently outperforms the baseline across all sub- 584
datasets with up to 3% gains. 585

These results confirm the necessity of FedPall’s global 586
classifier, which captures cross-client category informa- 587
tion to enhance client-server collaboration and improve the 588
framework’s generalization against feature drift. 589

6. Conclusion 590

In this study, we focus on the feature drift problem in FL. 591
The feature drift problem causes the same class samples 592
on different clients to have distinct feature distributions, 593
making it difficult for traditional model aggregation meth- 594
ods to handle such data heterogeneity. To tackle this prob- 595
lem, we design a prototype-based adversarial collaborative 596
framework to unify feature spaces and enhance classifi- 597
cation boundaries. The global classifier is retrained with 598
mixed features to further grasp classification-relevant infor- 599
mation from a global perspective. Our method has em- 600
pirically achieved state-of-the-art performance in popular 601
feature-drifted datasets with multiple data sources. 602

Currently, our work is limited to image classification 603
tasks and has not been extended to other domains. In 604
the future, we aim to systematically validate the frame- 605
work’s generalizability across multimodal learning scenar- 606
ios. 607
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