
Robust Index Benefit Estimation via Hierarchical
and Two-dimensional Feature Representation

Tao Li†∗ Feng Liang‡∗ Jinqi Quan†, Zihang Yang†, Teng Wang†, Runhuai Huang†, Xiping Hu‡, Meng Li§, Haipeng Dai§
†State Cloud, China Telecom, ‡Shenzhen MSU-BIT University, §State Key Laboratory for Novel Software Technology, Nanjing University

Abstract—In recent years, machine learning-based index ad-
visors have gained success as they can estimate the benefit
of a given index without actually evaluating it via what-if
optimizers. However, existing methods often fail to capture index-
relevant features adequately, leading to limited accuracy and
poor adaptability to changes in workload, schema, or data.
To address these challenges, we propose EDDIE, a novel index
benefit estimation approach based on Hierarchical and Two-
dimensional Encoding. Our method encodes columns according
to their positions in queries and indexes, consolidates index-
related features into a compact representation, and leverages two-
dimensional attention to model both query plan structure and
index interactions. Finally, EDDIE can be seamlessly integrated
with existing index advisors in real-world systems.1 Extensive
evaluations demonstrate that it significantly outperforms state-
of-the-art estimators in both accuracy and robustness.

Index Terms—Index Advisor, Machine Learning.

I. INTRODUCTION

Indexes are critical for accelerating queries, but finding an
optimal index configuration for a given workload is chal-
lenging [1]. Over the decades, many index advisors have
been developed to automate or assist this task [2]–[5]. These
index advisors typically generate candidate indexes from the
database schema and workload, then painstakingly evaluate the
efficiency of each configuration to determine the most optimal
one. However, this method is time and compute-intensive
owing to the huge configuration space, which involves nu-
merous queries, indexable columns, and varying index sizes
and column orders. Thus, it is crucial to efficiently estimate
index benefits without physically materializing them.

To address this problem, what-if-based methods [6] [4]
[7] let index advisors create hypothetical indexes, generate
query plans, and estimate index benefits using optimizer cost
models. However, they face three main limitations: (1) lack
of support for databases without what-if capabilities (e.g.,
MySQL); (2) long running time, e.g., [8] reports that up to
90% of the running time of an index selection algorithm is
taken by what-if optimizers; (3) high computational overhead

∗These authors contributed equally to this work, ordered by surname.
Correspondence to: Tao Li (lit51@chinatelecom.cn), Xiping Hu

(huxp@smbu.edu.cn), and Haipeng Dai (haipengdai@nju.edu.cn).
This work was supported in part by the National Natural Science Foundation

of China (No. 62576213, No. U24B20153, and No. 62402212), Guangdong
Province Key Projects in Artificial Intelligence (No. 2025ZDZX3047) and
Jiangsu Provincial Natural Science Foundation (No. BK20241245).

1Source code: https://github.com/quanjnq/Eddie.

on databases because of calling optimizers, which can interfere
with production workloads [3]. To overcome these limitations,
machine learning methods have been proposed to remove
reliance on what-if calls. These models can be deployed
independently from the database and parallelized on multiple
GPUs, thus greatly reducing index tuning time.

As for machine learning methods, the key difficulty lies in
building an accurate and robust model, especially in light of
the following factors: (1) Capturing Rich Query-index Interacting
Features: Estimating index benefits necessitates capturing a
wide range of interacting features, including data columns,
query predicates, data statistics, and index interactions [9].
(2) Sensitivity to Column Positions: The effectiveness of an
index is highly sensitive to the position of columns in both
the index and SQL operators. For example, ORDER BY in
MySQL requires prefix alignment [10], making it essential to
model positional constraints accurately. (3) Evolving Workloads,
Schemas and Data: In practice, workloads, schemas, and data
distributions on databases change over time [2], [11], [12].
Robust index benefit estimation under changing environments
is thus of vital importance. Unsurprisingly, the state-of-the-art
methods lack accuracy or robustness because they miss one
or more key factors. For example, LIB [13] assumes a static
workload and ignores initial indexes, ORDER BY sorting
direction, and column positions in the query; DISTILL [14]
handles only simple SQL templates, misses join conditions,
and records only the highest column position in indexes. This
reveals a clear gap between existing literature and the practical
needs of database administrators.

Our Approach. To overcome the limitations of prior
methods in handling complex index and query interactions
as well as environmental changes, we propose EDDIE, an
encoder-based estimator for index benefit prediction. EDDIE
is designed to capture rich, position sensitive features while
generalizing across diverse schemas and query patterns. At a
high level, EDDIE takes as input the query plan under existing
indexes, schema information, candidate index configuration,
and column statistics, and outputs a benefit score for the
candidate indexes. To achieve this, we introduce a novel repre-
sentation technique called Hierarchical and Two-dimensional
Encoding (HTE), which embeds index and data features into
the query plan and builds its representation from low-level
elements to high-level logical structures, forming an encoding
hierarchy. In this way, we can not only systematically capture

all influential factors from different levels of a query plan,
but also enable low-level features to be reused by high-level
ones. In addition, EDDIE employs a two-dimensional attention
mechanism to model both structural dependencies in the query
plan and interactions among candidate indexes. Finally, by
using a position-based embedding scheme, EDDIE remains
schema agnostic while accurately modeling column positions,
enabling robust generalization in real-world scenarios.

Contributions. To summarize, our main contributions are:
• We propose and open-source EDDIE, an encoder-based

model for index benefit estimation that effectively captures
complex interactions between queries and indexes.

• We identify important features previously overlooked by
existing methods, such as column positions, compound
predicates, and interactions among query plan nodes, which
are critical to accurate index benefit estimation.

• We propose HTE, a transferable feature representation tech-
nique with a novel two-dimensional attention mechanism
to effectively capture the plan tree information and its
positional correlation with indexes. HTE also enables trans-
fer learning, and makes the trained model more robust to
evolving table schema, workload and data distribution.

• We provide an open-source implementation, and conduct
extensive experiments demonstrating that EDDIE reduces
estimation error by over 70% compared to state-of-the-
art baselines. Our method achieves superior accuracy with
less training data via cross-dataset pre-training and can be
seamlessly integrated with existing index advisors to deliver
substantial end-to-end performance improvements.
Roadmap. The rest of the paper is organized as follows.

Section II introduces preliminaries, defines the index bene-
fit estimation problem, and presents a motivating example.
Section III gives an overview of our approach, EDDIE, with
its core component HTE detailed in Section IV. Section V
describes model training and implementation. Section VI
presents our experimental evaluation. Section VII reviews
related work, and Section VIII concludes the paper.

II. BACKGROUND AND PROBLEM STATEMENT

A. Index Advisor and Index Benefit Estimation

As shown in Figure 1, the index advisors are generally
composed of three components: index candidate generation,
index selection, and index benefit estimation [15]. The first
component extracts indexable columns based on query syn-
tax and table schema, and then combines them to generate
candidate indexes according to different strategies, like ran-
dom column permutation and prefix-based expansion [15].
The second component selects subsets of candidate indexes,
forming what we call candidate configurations [15]. During
the index generation and selection processes, the index benefit
estimation component can be invoked from time to time to
estimate the benefit of an index or an index configuration.
After evaluating all candidate configurations or meeting the
stop condition, the index advisor will output the optimal
set of index configurations. Among these components, the
index benefit estimation (IBE) component is critical, as it

Index Advisor

Index candidate
generation

Component #1

Index
selection

Component #2
Query:

Select XXX From XXX

Table schema Index benefit estimation (IBE)

Component #3

Input

Estim
ate

d

Benefit

…
Recommended
Configuration:

Column a, Index : XX
Column b, Index : XX
Column c, Index : XX

Candidates

Output

Fig. 1: The workflow of an index advisor.

directly impacts both the quality of recommendations and
tuning efficiency [13], [16]. Therefore, this paper focuses on
enhancing IBE by building an accurate and robust model.

B. Problem Statement

The index benefit estimation, which aims to predict the
reduction in query execution cost brought by an index set,
involves a continuous target and can therefore be formulated
as a regression problem, with features from the query, data,
and index as input and the estimated cost reduction as output.
Parameter Definition:
• Database. A database D comprises a set of tables T .
Each table t ∈ T has a schema At (i.e., a set of columns)
and statistics St (e.g., row count, min/max, histograms). We
represent the database as a tuple (A,S), where A is the column
space and S collects the statistics for all tables in T .
• Workload. Workload W is a set of queries over a time
interval. For each q ∈ W , Tq denotes its referenced tables.
• Index. An index I , built on table t to improve query
performance, consists of an ordered set of columns from t.
An index materialized before tuning is called an initial index;
one generated by the advisor is a candidate index.
• Initial index configuration. An index configuration is a set
of indexes. The initial configuration C0 includes all initial
indexes in D. For a query q, only a subset C0

q ⊆ C0 is relevant.
• Candidate index configuration. A candidate configuration
C ′ is a set of advisor-generated indexes for tables in D. The
advisor may iteratively generate and select the optimal C ′.
• Index interaction. Index interaction refers to the phenomenon
where the benefit of one index for certain queries is influenced,
positively or negatively, by the presence of other indexes [9].
As a result, the overall benefit of a candidate configuration
must be evaluated jointly.
• Physical query plan. A physical query plan for q describes
the steps to execute the query, typically as a tree where nodes
are physical operators and edges represent intermediate results
flowing upward. The plan can be denoted as Pq = (N,E),
where N and E are the sets of nodes and edges, respectively.
In the rest of the paper, we mainly discuss physical query
plans, and use query plan and physical query plan interchange-
ably if there is no ambiguity.
• Execution cost. Given a query q and an index configuration
C, let Cost(q,D,C) denote the execution cost of q’s optimal
query plan P ∗

q on database D under C. This cost depends on
various factors, including the query structure, index configu-
ration, and table statistics.

• Index benefit metric. Index benefit B(q,D,C0, C ′) is com-
monly measured by the cost reduction when applying the
indexes in C ′. Inspired by [13], [16], we focus on the relative
cost metric to characterize index benefit in this paper due to
its robustness to small cost estimation errors.

Problem Formulation. Formally, for query q, the cost
reduction when replacing C0 by C ′ is

R(q,D,C0, C ′) = Cost(q,D,C0)− Cost(q,D,C ′),

and the relative cost reduction is defined as the cost reduction
ratio, i.e.,

B(q,D,C0, C ′) =
R(q,D,C0, C ′)

Cost(q,D,C0)
. (1)

Thus, the overall cost reduction over the workload W is:

RW (D,C0, C ′) =
∑
q∈W

R(q,D,C0, C ′)

=
∑
q∈W

Cost(q,D,C0) ·B(q,D,C0, C ′). (2)

In practice, index advisors generate candidate configurations
that yield positive benefits, and their goal is to find the optimal
configuration C∗ that maximizes overall cost reduction. Since
Cost(q,D,C0) in Equation 2 is fixed and known from query
history or optimizer, the index benefit B(·) plays a key role
in determining RW (D,C0, C ′). Accurate estimation of index
benefit is therefore essential. Then, our objective is to build a
learned model to estimate index benefits.

Index Benefit Estimation (IBE) Problem Definition :
Given a database D = (A,S), we have a dataset where
each sample contains a query q, its optimal query plan
P ∗
q , an initial index configuration C0, a candidate index

configuration C ′, as well as the corresponding index benefit
B(q,D,C0, C ′). All the queries in the dataset constitute the
workload W . The objective of IBE problem is to learn a
regression model M from the dataset that can minimizes
the overall squared error between the actual index benefit
B(q,D,C0, C ′) and the estimated one B′(q,D,C0, C ′), i.e.,∑

q∈W (B(q,D,C0, C ′)−B′(q,D,C0, C ′))2.

C. Motivating Example

In this subsection, we will explain why existing methods are
not sufficient to address the problem via a motivating example.

Motivating Representative Queries. To illustrate the un-
derlying complexity overlooked by existing work, we present
five representative queries over a simple database (Figure 2)
with a single table customer containing three columns: c id,
name, and age. Initially, there is an index on the table, i.e.,
(age), and the candidate index configuration generated by
the index advisor contains only one index, i.e., (age, name).
Queries (a)–(d) share similar structures but differ in aspects
such as column order, sort direction, and specific operators.
As such, the estimated index benefit should vary based on
whether a query can effectively leverage the candidate in-
dex. However, the state-of-the-art method LIB [13] produces
identical estimates across these queries. The final query (e)

SELECT name, age
FROM customer WHERE age > 60
ORDER BY age, name
LIMIT 20

SELECT name, age
FROM customer WHERE age > 60
ORDER BY age DESC, name
LIMIT 20

Candidate index config: (age,name)

(a)

(b)

Index Scan

Sort

Limit

Index Scan

Sort

Limit

Index Only
Scan

Limit

Index Scan

Sort

Limit

Initial plan Plan under
candidate index

Candidate index config: (age,full_name)

Feature of Sort
by LIBQuery

Index benefit
0.5

SELECT name, age
FROM customer WHERE age > 60
ORDER BY name, age
LIMIT 20

(c)

Seq Scan

Sort

Limit

Index Scan

Sort

Limit

[Sort,stats_age,0,1,1]
[Sort,stats_name,0,1,2]

[Sort,stats_age,0,1,1]
[Sort,stats_name,0,1,2]

[Sort,stats_age,0,1,1]
[Sort,stats_name,0,1,2]

Initial index config: (age)

SELECT full_name, age
FROM customer WHERE age > 60
ORDER BY age, full_name
LIMIT 20

(e)

Index benefit
0

Index benefit
0

Index benefit
0.5

SELECT name, age
FROM customer WHERE age > 60
ORDER BY age, name
LIMIT 500 OFFSET 1000

(d)

Index Scan

Sort

Limit/Offset

Index Only
Scan

Limit/Offset

Index benefit
0.56

[Sort,stats_age,0,1,1]
[Sort,stats_name,0,1,2]

Fig. 2: Motivating example: (a) candidate index can serve
filter, sort and projection together, bringing significant index
benefit (0.5); (b) candidate index can serve filter only due
to columns in ORDER BY sorted in different directions
(DESC/ASC); (c) candidate index can serve filter only due
to mismatched column order in ORDER BY and candidate
index; (d) replacing LIMIT by LIMIT OFFSET can cause
index benefit change from 0.5 to 0.56; (e) renaming a column
should have no impact on index benefit.

is identical to (a) except that one column is renamed due to
schema evolution. Ideally, the estimated benefit should remain
consistent and be insensitive to column name changes.
• Base Query. For query (a), the candidate index (name, age)
is a covering index [17], as it includes all columns required by
the query output. Moreover, the index simultaneously supports
both the WHERE and ORDER BY clauses: the WHERE con-
dition references the leading column, and the index preserves
the sort order needed by ORDER BY. As a result, the query
can be significantly accelerated, yielding a substantial benefit
(e.g., 0.5). In the query plan, the initial Index Scan is replaced
with an Index Only Scan when using the candidate index. For
a specific node like Sort, LIB will generate two Index Opti-
mizable (IO) operations (shown in the middle of the figure),
[Sort,stats of age,0,1,1] and [Sort,stats of name,0,1,2], each
corresponding to a column in the candidate index. Note that
an IO operation consists of three parts: operation information
(e.g., node type), index column statistics (e.g., number of rows,
ratio of distinct values), and index configuration information
(e.g., index type and column order in the index). Specifically,
the third and second last bits [0,1] are a one-hot encoding
representing the multi-attribute index type, and the last bit
is the column position in the index. Unfortunately, several
important features are neglected in LIB, such as the sorting
direction (ASC/DESC), column positions in the Sort node,

Representation
by Fusion

Representation
by 2D Attention

Estimation Model

HTECandidate
Index Config

Initial
Query Plan

Data
Statistics

Estimated Index Benefit

Database

Index
Advisor

Workload

EDDIE

Schema

Input

L5

L4

Node
RepresentationL3

Expression
RepresentationL2

Identifier
RepresentationL1

Output

Fig. 3: Overview of EDDIE for index benefit estimation.

as well as the tree structure of the query plan. Moreover,
LIB assumes empty initial indexes (i.e., initial indexes are not
included in the input features), which generally does not hold
in real-world databases.
• Distorted Sorting Order. For query (b), changing the sort
direction on age prevents the candidate index from serving the
ORDER BY clause. Initially, the WHERE clause can leverage
the initial index, producing an Index Scan node in the plan.
However, applying the candidate index does not alter the plan,
resulting in zero index benefit. This highlights the importance
of capturing all influential factors in IBE. Unfortunately, LIB
cannot distinguish between queries (a) and (b), generating
identical IO operations for both.
• Changed Column Positions. As for query (c), when we
permute the order of age and name in the ORDER BY clause,
the candidate index cannot be used for sorting these columns.
The index benefit consequently remains zero in this case.
Again, LIB failed to recognize such a change when generating
IO operations because it does not record the positions for
columns in SQL operators.
• Plan Nodes and Structure. LIB only considers five types of
IO operations (i.e., join, sort, group, scan range, scan equal)
and ignores the plan tree structure. However, other node
types, like Limit and Union, can also contribute to the query
execution cost and ultimately affect the benefit of a candidate
index. We showcase this problem by query (d), which changes
the LIMIT clause in query (a) to a LIMIT/OFFSET clause.
Correspondingly, the index benefit increases from 0.5 to 0.56.
Unfortunately, LIB is unable to capture this change.
• Evolved Table Schema. To simulate schema evolution,
query (e) renames column name to full name, while keep-
ing semantics identical to query (a). The expected index
benefit should thus remain unchanged. However, most query
plan representation methods [18], including AVGDL [19] and
QueryFormer [20], rely heavily on column names. As a result,
queries (a) and (e) are encoded into different vectors, violating
drift tolerance and causing inconsistent benefit estimation.
Additionally, these methods lack index representations and
therefore cannot be directly applied to the IBE problem.

III. OVERVIEW

EDDIE is an ML-based index benefit estimator invoked by
index advisors to predict the benefit of a candidate index

configuration for a specific query. As shown in Figure 3, ED-
DIE consists of two main components: Hierarchical and Two-
dimensional Encoding (HTE) and estimation model. Given a
triplet ⟨D,C ′, q⟩, where D is the target database, C ′ is a
candidate index configuration to evaluate, and q is a query
on the database, HTE is responsible for extracting features
from the following four inputs and outputs a condensed
representation R∗: 1) Initial query plan. The physical query
plan Pq for q under the initial indexes. Typically, it can be
obtained by running the EXPLAIN statement on database D.
2) Table schema. Schema information from database D, such
as column data type, column-table relationship, etc. 3) Data
statistics. Data statistics of the columns referenced by query
q. 4) Candidate index configuration. It contains a set of
candidate indexes C ′ = {I}. Then, the representation R∗ is
fed into the estimation model, a multi-layer perceptron (MLP).
Finally, the estimation model will generate an index benefit
value between 0 and 1.

The main objective of HTE is to encode the entire query
plan Pq into a vector representation in a hierarchical manner.
Meanwhile, the table schema, data statistics, and candidate
index configuration are treated as auxiliary information to
augment the representation of the query plan during the
encoding process. In this way, the impacts of the information
on index benefit can be expressed. For example, to encode
a column appearing in Pq , both the column’s position in
the candidate index and its corresponding data statistics are
utilized to generate the column’s representation. This hier-
archical representation of the query plan is inspired by the
top-down design of SQL grammar in ANTLR [21], where
language structures are built progressively from coarse to fine
levels. Specifically, HTE progressively constructs the final
representation of a query plan through five levels as below.
• L1 – identifier representation, which focuses on encoding

column identifiers appearing in Pq . For each column, we
generate an embedding based on its position in candidate
indexes, rather than based on column name, and additionally
combine column schema and data statistics information into
the column’s representation.

• L2 – expression representation, which encodes SQL ex-
pressions appearing in the query, e.g., predicates. For SQL
expressions where column order matters, such as the ordered
column list in Sort node, we intentionally keep such order
when encoding these expressions.

• L3 – node representation, which encodes typical features
for single nodes in the query plan, including the node type,
execution cost, output columns, and SQL expression in the
node. There is a finite number of node types, such as Join
and Union, for any database.

• L4 – plan-dimension and index-dimension attentions,
which leverage the self-attention mechanism of Trans-
former [22] to capture the relations of different nodes from
the perspectives of plan tree structure and the interaction of
the candidate indexes in C ′ [9], respectively.

• L5 – final representation, produced by fusing the outputs
of the two-dimensional attentions by a pooling mechanism.

Concat

Candidate index configuration

Column

Data type

Column postion
embedding

Column schema
embedding

Null fraction

Distinct fraction

log(NDV)

Column stats.
embedding

Postion in index

Column
representation

Li
ne

ar

Index Index ... Index ...

Concat

Node type Cost Rows Output columns Ordered columns Predicate

Node basic information Expression information

L1
Representation

L3
Representation

L2
Representation

Fig. 4: Column, expression and representations for a candidate index.

The design of HTE has several advantages. First, it enables
the reuse of representations of low-level elements to encode
the high-level ones, and decomposes the complex work of
constructing a representation for multiple inputs into a se-
quence of simple and manageable steps. Second, it captures
the index benefit-related features as many as possible and
encodes them at the suitable levels. Third, we respect the
importance of column positions and encode the column po-
sition information regarding both the candidate index and the
query plan node. Fourth, the position-based column identifiers
also help overcome the drawback of name-based embedding
methods, which are sensitive to schema changes. As a result,
HTE is schema-agnostic and enables transferring knowledge,
which has been learned from identical databases with different
schemas/workload/data, to future new IBE tasks.

IV. HIERARCHICAL AND TWO-DIMENSIONAL ENCODING

In this section, we introduce the detailed encoding method
for each of the representation levels in HTE. For the i-th level,
we denote the representation of the corresponding entity by
Ri.

A. L1: Identifier

In practice, index advisor tools, such as DTA [23] and Au-
toAdmin [24], support a number of constraints that users can
set for their index tuning tasks, such as index storage budget,
maximum number of recommended indexes, maximum size of
the multi-column indexes, etc. Let m be the maximum number
of indexes within each candidate index configuration, and k
be the maximum number of columns permitted in a candidate
index. In the identifier level, we focus on encoding the columns
referenced by a query with respect to each of the m indexes in
the candidate index configuration. Properly encoding columns
is crucial because a candidate index will cause the initial query
plan to change, e.g., turn Seq Scan to Index Scan, only if some
columns in the initial query plan and a candidate index overlap
and appear in matching order. Otherwise, the benefit of the
candidate index to the query vanishes.

For a column c, HTE produces a column embedding with
size dc for each candidate index I ∈ C ′. Overall, an index
configuration with a maximum of m candidate indexes result
in the column’s representation Rc

1 ∈ Rm×dc . As shown

in the upper diagram of Figure 4, a column’s embedding
is basically the concatenation of three parts: position-based
column embedding, column schema embedding and column
data statistics embedding.

The first part is a learned embedding for the column based
on its position in index I . Let Pos(c, I) be the c’s positional
relation with index I .

Pos(c, I) =


P c
I if c ∈ I,

MIS COL if c /∈ I ∧ tc==tI ,
MIS TBL if c /∈ I ∧ tc!=tI ,

(3)

where P c
I is the position of column c in index I , tc is the

column’s table, and tI is the index’s table. MIS COL and
MIS TBL are two special tokens that denote whether column
c and I belong to the same table and two separate tables,
respectively. Finally, the position-based column embedding is
Embed(Pos(c, I)), where Embed(·) is a learnable embed-
ding function. For example, column age is referenced by query
(a) in Figure 2, and its embedding is Embed(2) corresponding
to index (name, age), where 2 is age’s position in the index.

In addition to column positions, column schema information
and data statistics are also useful to IBE. For example, column
data distribution will affect the selectivity of a predicate and
further lead query optimizers to choose different data scan
methods. To this end, the second part of the column embedding
involves the encoding of column data type; the third part
concatenates the embeddings of multiple statistical metrics,
including the number of distinct values (NDV), fraction of
distinct values, and fraction of NULLs.

Overall, this identifier-level encoding brings two advan-
tages: schema-agnostic and position-awareness. None of the
embeddings in the column representation depend on column
names. Meanwhile, column position information regarding the
candidate index is preserved. In this way, two columns will
have the same position embedding, as long as their positions
in the index are the same. Also note that one column can
yield multiple column representations, each corresponding to
one index in the candidate index configuration.

B. L2: Expression

There exist dozens of SQL operators in the standard SQL
specification. In expression-level encoding, we aim to describe
the expressions appearing in these SQL operators with an
emphasis on Scan, Join, Aggregate, and Sort, which can
be optimized by indexes. The expressions in Scan and Join
are basically predicates that evaluate to be true or false,
while the expressions in Aggregate and Sort are position-
sensitive columns. That is to say, the position of a column in
Aggregate and Sort largely determines whether the operators
are optimizable through indexes. In the following, we describe
the encoding methods for these two types of expressions.

1) Predicate: Predicates can be either atomic or com-
pound. An atomic predicate, like age > 10, typically
compares a column with a value or another column,
and is often expressed in the form of a triplet, e.g.,

⟨column, comparison operator, value⟩. A compound pred-
icate combines one or multiple atomic predicates by logical
operators, such as AND/OR/NOT.

In our approach, an atomic predicate is encoded by concate-
nating the three elements of the corresponding triplet, followed
by the selectivity of the predicate. The resultant embedding
of the atomic predicate p is Ep

2 ∈ Rm×dp , where dp is the
predicate embedding size. Selectivity is utilized because it
plays an important role in determining whether a conditional
table scan will utilize an index. More importantly, selectivity
is between 0 and 1, and thus a more stable input compared
with the comparison value of the predicate. A wide range
of database engines have mature cost-based optimizers to
compute the selectivity of a predicate.

However, most of the existing predicate encoding methods
are only able to deal with atomic predicates [18]. In this
paper, we further support compound predicates. Our insight is
that compound predicates can be expressed in a tree structure
where each node is either an atomic predicate or a logical
operator. Thus, we are able to leverage a tree-based attention
mechanism, similar to the approach in [20], to aggregate the
information of the entire tree. For compound predicate p, its
predicate tree is first flattened into a sequence of tree node
embeddings, where the previous method is reused to encode
atomic predicates and one-hot encoding is adopted to deal with
logical operators. Additionally, we introduce an auxiliary node
ps, called aggregate predicate node, with learnable feature
embedding, and append it to the head of the sequence. Unlike
other nodes, aggregate predicate node is connected with all the
other nodes. Then, by applying the tree-structured Transformer
on the node embedding sequence, the output vector of the
aggregate predicate node, denoted by Eps

2 ∈ Rm×dp , will
represent the entire compound predicate, that is, Rp

2 = Eps

2 .

2) Ordered Column List: Aggregate and Sort operators
may contain an ordered list of columns. For example, a
company’s total revenue can be grouped by a sequence of
dimensions, like region and product type; employees can be
sorted first by the age and then by the salary. The representa-
tion of an ordered list of columns l, denoted as Rl

2, consists
of a list of column representations {Rc

1} and a consistency
value, where column c ∈ l. Consistency is a boolean value
that indicates whether the sorting directions (ASC/DESC)
of overlapping columns between ordering keys and indexed
columns are exactly aligned. For Aggregate operators where
the sorting direction is not applicable, the consistency value
is always set to 1. To maintain the position information of the
columns, the column representations in Rl

2 are concatenated in
the same order as in the list l. In this way, HTE can consolidate
the column position information from both candidate indexes
and Aggregate/Sort operators together. On one hand, the
column position regarding candidate indexes is captured by
Rc

1. On the other hand, column positions within SQL operators
are preserved in Rl

2.

C. L3: Plan Node

Now we start to describe how HTE encodes the nodes in
a query plan. A plan node is composed of a group of basic
node information along with the expression representation, as
shown in the lower part of Figure 4. Node encoding involves
four basic types of information: node type, cost, output rows,
and output columns, as detailed below.
1) Node type. It specifies the node’s physical operator type,

such as Indexed Scan and Merge Join. The number of node
types for a specific database is finite, and thus node type
can be expressed by a categorical variable.

2) Node cost. It is the optimizer’s estimated cost for the node.
For certain databases like PostgreSQL, the default cost
value in the EXPLAIN output additionally includes the
cost of all its child nodes. In this case, we can exclude
the children to determine a single parent node’s cost.
The start-up cost, however, is not closely related to index
recommendation and thus ignored.

3) Output rows. It denotes the estimated number of rows
output by the node.

4) Output columns. A node’s output columns contain useful
information for recommending covering indexes. Specifi-
cally, if a node’s output contains some columns that do
not appear in the search condition, it is possible to create a
covering index with both those columns and the search key
to speed up the query. Thus, we are motivated to encode
the output columns from the node, and leverage the L1
representation to describe those columns. However, existing
query plan representation methods, like [20], [25] do not
encode this information.

Regarding the expressions in the plan node, we extract the
ordered column list and predicates, and then adopt the L2
representation method to encode them. The resultant repre-
sentations are concatenated together to produce R3 as shown
in Figure 4. For a plan node x, we have its representation:
R3 ∈ Rm×dx , where dx is the size of the embedding for node
x with respect to one candidate index.

D. L4: Two-dimensional Attention

Given a query plan Pq = (N,E), where N and E represent
the node set and edge set, respectively, we can now obtain
a sequence of node representations {Rx

3} for the query plan
based on the previous L3 method. Recall that Rx

3 ∈ Rm×dx ,
then the node representation sequence is of size n×m× dx,
where n = |N | is the size of the node set. In order to gather
information from the entire query plan tree, we add an assistive
super node xs into the sequence fully connected with all other
nodes, thus increasing the sequence size to (n+1)×m× dx.

To create a good representation for such a complex se-
quence, we innovatively propose a two-dimensional attention
mechanism (see Figure 5). In the first dimension, which we
call plan-dimension, we leverage the tree-structured attention
mechanism, similar to [20], to encode n + 1 nodes based on
the query plan tree, yielding a plan-dimension representation
of size (n+ 1)×m× (dx/2). The second dimension, which
we call index-dimension, aims to capture the interaction among

...
Node nNode 1

Pooling

Output

Encoded
Super Node

Node 1 ... Node nSuper
Node

Index 1
Index m

Flatten & Concat

Linear

Reshape

Random
Initialization Flatten

K×

Super Node

...

...

Tw
o-dim

ensional A
ttention B

lock

Intra-
index
Cross-
node

 Attention

Intra-
index
Cross-
node

 Attention

Plan-
dimension
 Attention

Intra-node Cross-index AttentionIntra-node Cross-index AttentionIndex-dimension Attention

Node Representation

Fusion

...

...m

Fig. 5: Two-dimensional attention blocks followed by a fusion layer.

indexes [9]. Again, we leverage the attention mechanism to en-
code the representations for m candidate indexes. The result is
an index-dimension representation of size (n+1)×m×(dx/2).
Through concatenation of the two results from the attention
mechanism, the output restores the size of (n+ 1)×m× dx,
and is forwarded to a linear layer. Overall, the two-dimensional
attention block is an IBE-specialized variant of the well-known
Transformer block [22]. Moreover, HTE stacks K of such
blocks, where K is a tunable parameter depending on the
computation power. The output of the K blocks is the L4
representation, denoted by R4 ∈ R(n+1)×m×dx .

E. L5: Fusion

Finally, we pick the super node’s output from L4 represen-
tation, denoted by Rxs

4 ∈ Rm×dx , and apply a pooling layer
on it to fuse the node’s information, that is,

R5 = AvgPool(Rxs
4), (4)

where AvgPool(·) is the average pooling function over the
node’s m embeddings (each with size dx) and R5 ∈ Rdx is
the final condensed representation for all the input in Figure 3,
i.e., R∗ = R5.

V. TRAINING AND IMPLEMENTATION

A. Estimation Model and Training

1) Training: Now that HTE helps to generate a useful
representation for all the inputs, EDDIE predicts index benefit
through an estimation model, which is a multi-layer perceptron
(MLP). The predicted index benefit is:

B̂ = MLP (R∗), (5)

where MLP (·) is a multi-layer perceptron with the residual
connection. Let B be the corresponding ground-truth index

benefit. The training loss is the mean squared error (MSE)
between the predicted and ground-truth index benefits:

L = MSE(B̂, B). (6)

To train the model for EDDIE, we need to collect training
data in the form of ⟨query text, initial query plan, query-
referenced table schema, query-referenced column statistics,
candidate index, index benefit value⟩. To collect enough data
for training, there are multiple feasible and safe solutions
in practice, e.g., replicate an extra database, modify indexes,
and replay the application SQL to obtain the index benefit
by comparing the execution time before and after the index
modification. For analytic-only queries, it is also viable to
execute them on the read-only replica of databases, thus posing
minimum impact on user business. Instead of physically creat-
ing those indexes and running the SQL, we can also leverage
hypothetical indexes and obtain estimated execution cost by
running EXPLAIN statements. The latter is more scalable,
although not as accurate as the former approaches.

2) Pre-train and Fine-tune: A notable merit of our ap-
proach is that it enables transfer learning, as HTE creates
transferable feature representations. Given a pre-trained EDDIE
model M′, we can fine-tune it based on training data collected
from the target database, yielding a fine-tuned model M.
Typically, fine-tuning requires significantly less training data,
thus saving considerable cost for data collection. Note that it
is preferable that the databases in pre-training and fine-tuning
phases should have identical database type, software version,
and hardware profile in order to assure knowledge transfer
quality. Minor software version differences (e.g., MySQL
8.0.29 and 8.0.30) may be acceptable, as long as the version
change does not cause disparity in query execution logic. Also,
as a cloud service provider who operates a large number of
databases on the cloud, it is feasible for us to accumulate
sufficient training data (with user permission) to pre-train a
foundation model for each database instance type, and then
adapt to downstream index tuning tasks. We leave the large-
scale pre-training for future work; instead, we will demonstrate
its effectiveness by certain benchmarks and realistic datasets
in the evaluation section.

B. Integration with Index Advisors

During the index selection process, index advisor tools, such
as DTA and AutoAdmin, rely on the estimated cost of the
query execution plan under the candidate index configuration.
Since EDDIE is only able to provide an index benefit, which
is the relative performance improvement, we have to convert
the benefit value back to a predicted execution cost for the
tuners to use. According to Equation 1, we can determine the
execution cost under the candidate index configuration by the
following formula:

Cost(q,D,C ′) = Cost(q,D,C0)× (1−B(q,D,C0, C ′)).

Here, the original cost Cost(q,D,C0) can be obtained either
by running the query or from historical query logs.

TABLE I: Summary of Datasets

Dataset # Queries # Cases

Templated Synthetic Total w/o Initial w/ Initial Total

TPC-DS 390 0 390 4,910 22,118 27,028
TPC-DS+ 390 3,000 3,390 8,378 22,664 31,042
TPC-H 1,120 0 1,120 2,400 2,240 4,640
TPC-H+ 1,120 3,000 3,120 5,888 2,830 8,718
IMDB 240 0 240 6,240 23,900 30,140
IMDB+ 240 3,000 3,240 9,858 24,516 34,374
Redbench 556 0 556 10,852 53,556 64,408

VI. EVALUATION

A. Experimental Setup

Our experiments differ from existing work in three im-
portant ways. First, most of existing work experiments on
benchmark workloads, like TPC-DS, TPC-H, and IMDB,
which are based on fixed SQL templates and only cover
specific application scenarios. But real-world workloads are
dynamic, and SQLs are much more diversified. To evaluate an
IBE method on more general scenarios, we further consider
workloads extended from these templated ones by synthesizing
random SQL or incorporating realistic cloud query character-
istics. Second, we consider both empty and non-empty initial
index scenarios. The latter is more general in the real world.
Third, we simulate a variety of environmental changes, such
as workload and schema drifts, as well as data updates, to test
IBE methods under these realistic conditions.

1) Workloads:
• Benchmark workloads: First, we employ standard bench-

marks, including TPC-DS, TPC-H with a scale factor (SF) of
10, and IMDB, whose queries are generated via predefined
templates. Following prior practices [26], we exclude certain
templates with disproportionately high execution costs, as
they can dominate workload costs and skew index selection.
Specifically, for TPC-DS, we use 78 out of 99 templates,
generating 5 queries per template, resulting in 390 queries.
For TPC-H, we use 14 out of 21 templates, with 80 queries
per template, yielding 1,120 queries. Regarding IMDB, 80
out of 113 templates are used and 3 queries are generated
per template, yielding 240 queries in total.

• Extended workloads: There are two ways to extend the
above standard workloads. First, we synthesize some queries
by combining different SQL components, such as JOIN,
WHERE, GROUP BY, ORDER BY, and LIMIT, in a
probabilistic and recursive manner. Then, the synthesized
queries are mixed with the original ones to create the
extended workloads. Second, the increasing adoption of
cloud databases in recent years has motivated us to evaluate
IBE methods under cloud environments. To this end, we
employ an existing cloud-optimized workload named Red-
bench [27], which samples queries from IMDB based on
the similarity to Redset, an AWS-released dataset containing
real customer query metadata.
2) Method of generating index configurations: For each

query q in the workload without any initial indexes, we
use AutoAdmin [24] to generate the optimal configuration,
denoted by C∗. The maximum number of indexes in the

candidate configuration is 5, where each index contains at most
2 attributes. Then, all the non-empty subsets of C∗ is,

N(C∗) = {C|C ⊆ C∗ ∧ C ̸= ∅}.

Let k be the number of indexes in the optimal configuration,
then |N(C∗)| = 2k−1. We also introduced a superset function
for an index configuration C, defined as:

S(C) = {C ′|C ′ ⊆ C∗ ∧ C ⊂ C ′},

As an example, suppose C∗ = {(c1, c2), (c3)}, then
N(C∗) = {{(c1, c2)}, {(c3)}, {(c1, c2), (c3)}}. Given an in-
dex configuration C = {(c1, c2)}, its superset S(C) =
{{(c1, c2), (c3)}}. By enumerating the non-empty subsets and
their supersets, we are able to spawn a great number of index
configurations for each query.

Besides, by combining empty/non-empty initial configura-
tions, we can create two practical scenarios for each workload:
• w/o Initial: Initial configuration is empty, and the non-

empty subsets N(C∗) serve as the candidate configurations.
• w/ Initial: The non-empty subsets N(C∗) serve as the

initial configurations, while the union of all the initial
configuration’s supersets, i.e.,

⋃
C⊆N(C∗) S(C), constitutes

the candidate configurations.
For each query in the workload, we materialize the initial

configurations on the tables, and run the query by EXPLAIN
ANALYZE command before and after applying the candidate
configuration. The results of EXPLAIN ANALYZE not only
show the query plan, but also the real execution time. Each
query is executed 3 times without database cache warm-up,
and the average execution time of the 3 runs is used for
deriving index benefits. In this way, we can collect all the in-
formation needed for each training sample (see Section V-A1).
The characteristics of the resulting datasets are summarized in
Table I, detailing query and case counts across workloads.

3) Baselines: We compared EDDIE against three baselines
to evaluate its performance in index benefit estimation:
• PG. As most existing index tuners rely on optimizer-based

cost estimation, we compare EDDIE against PostgreSQL
(PG) 12.13’s cost estimator. Specifically, we utilize HypoPG
1.3.1 [28] to create virtual indexes, invoke the optimizer to
compute query costs before and after index creation, and
calculate the estimated index benefit from these costs.

• AMA-R. AIMeetsAI [16] is a classifier to predict query
performance regression with key features derived from the
difference between two query plans. We replace its classifi-
cation component with a regression one, which consists of
a two-layer fully connected neural network and a Sigmoid
output layer, so that the index benefit can be predicted. The
altered model is called AMA-R. As input to the model, each
pair of query plans is the one generated for an identical
query before and after creating the candidate indexes.

• LIB [13]. A state-of-the-art attention-based model for index
benefit prediction.

• QF-I. QueryFormer [20] is the state-of-the-art query rep-
resentation method but lacks consideration of index con-
figuration. To remedy it, we mix an index encoder from

TABLE II: Performance with and without Initial Index Configurations

Model
TPC-DS TPC-DS+ TPC-H TPC-H+ IMDB IMDB+ Redbench

Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean
Without Initial Index Configurations

PG 3422.5/468.5 0.125 2003.7/335.2 0.092 1623.7/279.1 0.084 2236.6/379.7 0.074 7670.6/1071.6 0.238 8818.0/1551.5 0.341 6548.6/885.5 0.309
AMA-R 460.3/135.3 0.051 285.0/102.5 0.047 560.8/146.5 0.023 398.0/135.2 0.046 2670.4/408.5 0.142 1873.8/332.9 0.115 1591.7/271.8 0.131
LIB 345.5/133.7 0.065 499.3/169.9 0.073 134.3/30.3 0.013 200.8/201.5 0.058 2827.1/551.0 0.203 2680.1/466.2 0.161 1415.5/233.0 0.182
QF-I 208.6/95.1 0.035 274.1/142.0 0.056 148.8/22.9 0.010 214.1/167.3 0.044 1909.6/284.5 0.113 2065.3/346.0 0.126 1528.5/247.1 0.129
EDDIE 162.2/44.9 0.028 97.7/86.6 0.039 70.8/15.9 0.009 90.6/126.8 0.033 1396.3/248.5 0.102 1154.2/247.0 0.096 1078.7/214.9 0.112

With Initial Index Configurations
PG 5063.7/749.7 0.226 3882.0/631.1 0.141 2197.1/263.5 0.075 2405.4/373.7 0.076 8896.8/1417.6 0.345 8894.8/1331.6 0.319 6493.1/761.0 0.282
AMA-R 426.3/88.1 0.041 319.3/90.0 0.043 255.9/57.2 0.014 223.9/109.7 0.035 2344.9/392.2 0.149 2205.2/356.3 0.134 1669.4/282.2 0.145
LIB 209.0/66.9 0.041 359.5/103.1 0.052 85.4/21.3 0.015 136.5/185.5 0.058 2087.7/369.7 0.156 2654.5/414.8 0.163 1319.1/229.5 0.149
QF-I 388.0/82.6 0.038 479.4/128.7 0.051 118.1/19.6 0.012 171.5/166.6 0.045 1968.8/304.4 0.134 2308.9/363.2 0.137 1505.4/276.3 0.145
EDDIE 93.5/34.7 0.025 120.1/61.5 0.030 50.5/14.7 0.011 74.2/104.5 0.031 641.4/159.5 0.084 1159.0/228.8 0.087 857.7/188.9 0.099

ChangeFormer [29] to make it capable of predicting index
benefit. The resultant model is named QueryFormer-I (QF-
I, in short). Specifically, the output of ChangeFormer’s
index encoder and QueryFormer’s plan representation are
concatenated into the final representation vector, which then
serves as input to a two-layer fully connected neural network
with a Sigmoid function, similar to AMA-R.
4) Model training: We have trained the EDDIE model with

the Adam optimizer [30] using the decaying learning rate.
Under our hardware condition, we set K to 4 and the number
of heads in plan-/index-dimension attention to 4. The learning
rate starts at 1e-4 and decays by 0.7 every 20 steps. We conduct
five-fold cross validation by using four folds as the training
set and one fold as the test set. With a batch size of 16, each
training runs for 100 epochs.

5) Metrics: Q-error [13], [25], [31] and mean absolute
error (MAE) [32] are two commonly used metrics to evaluate
the accuracy of regression models in the AI4DB field. Essen-
tially, Q-error characterizes the ratio between the predicated
and the actual, whereas MAE excels due to sharing the
same unit as the regression target. In our experiments, we
measure both of them. Letting S be the test dataset, and
letting B̂s and Bs be the predicted and ground-truth index
benefits, respectively, for each test sample s ∈ S, its Q-
error Qerror(s) is max(B̂s+ϵ

Bs+ϵ ,
Bs+ϵ

B̂s+ϵ
), where ϵ is a very small

constant for error correction, i.e., 1e-4. The mean Q-error,
i.e., 1

|S|
∑

s∈S Qerror(s), measures the average estimation
performance over the test dataset, and the 95-th percentile Q-
error reflects the estimation performance in some worst cases.
Conventionally, MAE is defined as 1

|S|
∑

s∈S |B̂s −Bs|.
6) Environment: Experiments have been conducted on a

Linux server equipped with an Intel 13th Gen i7-13700K CPU,
an NVIDIA GeForce RTX 4080 GPU, and 64 GB of RAM.
The DBMS used is PG 12.13. The training data collection and
testing of EDDIE are conducted on the same database, except
for the pre-training process, which is conducted on another
database but with an identical version and configuration.

B. Prediction Accuracy

First, we examine the accuracy of the predicted index
benefits by EDDIE and the baseline methods in the settings
with or without initial index configurations. The results are
shown in Table II.

In the case of no initial index configurations, EDDIE
consistently outperforms other baseline methods in terms
of both Q-error and MAE under all workloads. For exam-
ple, in TPC-DS, EDDIE achieves a mean Q-error of 44.9,
which is 66.8%, 66.4% and 52.8% lower than AMA-R, LIB
and QF-I, respectively. Regarding the 95-th percentile Q-
error, EDDIE also demonstrates significant improvement, e.g.,
EDDIE reduces the 95-th percentile Q-error by 53% over
LIB in TPC-DS. Meanwhile, this phenomenon sustains in
terms of MAE, although the scale of improvement slightly
decreases due to its different definition from Q-error. ED-
DIE achieves such advantages mainly because it success-
fully encodes sufficient features and column position infor-
mation. For example, in Query5 of TPC-DS workload [33],
the CTE expression csr’s performance can be improved by
introducing a configuration with two single-column indexes
{(catalog sales.cs sold date sk),(catalog returns.cr returned

date sk)}, which has a ground-truth benefit value of 0.23
in one sample of the dataset (a case of positive index inter-
action [9]). Meanwhile, either of the single-column indexes
alone brings no benefit to the Query5, because the Union
operator in the query hinders the subsequent Join operator
from utilizing these indexes. Unfortunately, LIB misestimates
a high benefit for these single-column indexes to be 0.011
and 0.406, respectively, since it neglects the Union operator
and its impact. On the contrary, EDDIE obtains a much more
accurate prediction (i.e., 0.005 and 0.031), very close to the
ground-truth benefit of 0. Besides, we have found that among
the baselines, the accuracy of PG’s optimizer is the worst
under all workloads, which aligns with the findings in [15]
[16] and implies that database optimizer’s cost estimation is
often untrustworthy, especially for complex SQL.

In the setting with initial index configurations, EDDIE
continues to perform better. Furthermore, we have found
EDDIE generally has lower estimation errors compared with
the previous setting. In real-world scenarios where databases
rarely run without initial indexes, EDDIE is more practical.

C. Robustness

To assess the robustness of EDDIE against environmental
changes, we introduce three types of drifts (query variation,
schema change, data volume shift) exclusively to the test set
(with initial index configurations), while leaving the training

TABLE III: Performance Comparison under Drift Scenarios (with Initial Index Configurations)

Model
TPC-DS TPC-DS+ TPC-H TPC-H+ IMDB IMDB+ Redbench

Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean
Query Variations

PG 4634.4/672.7 0.179 6513.9/946.4 0.194 5808.3/685.1 0.259 5667.0/578.8 0.179 9275.5/1756.0 0.363 9541.3/2099.7 0.351 7676.5/1051.8 0.314
AMA-R 2739.7/400.6 0.135 3024.2/446.2 0.132 5702.3/845.3 0.290 3283.0/392.0 0.208 4753.3/688.6 0.209 7361.5/1049.7 0.221 4201.4/546.8 0.199
LIB 1167.0/218.8 0.130 2158.4/351.9 0.135 2986.0/398.8 0.304 3081.6/805.3 0.253 3718.1/532.0 0.211 3075.2/445.7 0.110 3299.8/485.0 0.223
QF-I 3282.8/471.4 0.203 4751.5/605.0 0.159 6453.3/975.7 0.335 2287.9/735.0 0.267 5804.8/784.8 0.268 4993.6/1099.3 0.228 4114.5/547.9 0.220
EDDIE 992.6/197.1 0.095 1697.1/296.5 0.098 1266.7/286.6 0.221 808.5/221.2 0.157 3538.2/501.2 0.156 1062.8/250.7 0.064 2577.8/391.9 0.153

Schema Changes
PG 5063.7/749.7 0.226 3882.0/631.1 0.141 2197.1/263.5 0.075 2405.4/373.7 0.076 8896.8/1417.6 0.345 8894.8/1331.6 0.319 6493.1/761.0 0.282
AMA-R 426.3/88.1 0.041 319.3/90.0 0.043 255.9/57.2 0.014 223.9/109.7 0.035 2344.9/392.2 0.149 2205.2/356.3 0.134 1669.4/282.2 0.145
LIB 209.0/66.9 0.041 359.5/103.1 0.052 85.4/21.3 0.015 136.5/185.5 0.058 2087.7/369.7 0.156 2654.5/414.8 0.163 1319.1/229.5 0.149
QF-I 1482.4/250.7 0.128 2083.8/323.6 0.126 2118.2/301.4 0.071 6241.5/752.1 0.331 4582.2/577.3 0.235 3258.7/450.9 0.279 2895.0/368.3 0.249
EDDIE 93.5/34.7 0.025 120.1/61.5 0.030 50.5/14.7 0.011 74.2/104.5 0.031 641.4/159.5 0.084 1159.0/228.8 0.087 857.7/188.9 0.099

Data Volume Shifts
PG 6345.4/966.3 0.191 6079.5/883.1 0.175 3466.9/599.4 0.133 2421.6/366.8 0.083 N/A N/A N/A
AMA-R 2576.4/401.9 0.123 2677.1/337.0 0.115 3781.4/472.6 0.092 341.7/200.3 0.057 N/A N/A N/A
LIB 1921.5/304.7 0.117 1664.9/304.1 0.121 1682.8/281.3 0.060 1926.8/287.7 0.093 N/A N/A N/A
QF-I 3863.1/568.8 0.189 4076.0/557.5 0.150 2904.9/443.2 0.086 5927.8/746.7 0.323 N/A N/A N/A
EDDIE 1883.5/273.1 0.094 1619.8/240.7 0.088 1450.5/227.1 0.057 193.2/163.4 0.050 N/A N/A N/A

TABLE IV: Performance under Index Perturbation (with Initial Index Configurations)

Model
TPC-DS TPC-DS+ TPC-H TPC-H+ IMDB IMDB+ Redbench

Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean
PG 4019.2/517.5 0.128 2188.6/345.6 0.095 1439.1/211.8 0.066 4304.6/547.5 0.092 8814.6/1774.6 0.360 8483.4/1258.4 0.263 6405.4/770.5 0.296
AMA-R 590.2/117.8 0.050 194.5/93.2 0.045 417.1/141.8 0.021 144.0/103.4 0.034 2353.0/414.6 0.140 2224.3/358.9 0.114 1401.7/247.4 0.133
LIB 356.3/135.8 0.065 4953.1/458.0 0.128 134.9/36.6 0.016 394.6/394.6 0.107 2709.2/477.8 0.206 3464.2/547.2 0.181 2403.4/233.8 0.193
QF-I 467.9/95.5 0.036 732.0/262.0 0.078 219.5/35.5 0.013 173.0/170.8 0.049 2004.2/294.6 0.115 2145.6/358.1 0.119 1317.5/230.1 0.129
EDDIE 129.1/37.2 0.028 93.1/74.2 0.037 120.0/32.7 0.012 73.6/102.6 0.033 1144.8/233.5 0.110 1639.6/286.4 0.097 1013.5/183.5 0.114

set unchanged. The purpose of this setup is to evaluate
the trained model’s resilience to real-world drifts, simulating
workloads that evolve independently of the training data.

1) Query Variation: To examine EDDIE’s performance un-
der query variations, we modify the test set by appending
a randomly generated predicate to each query. Specifically,
for each query, we select an arbitrary column from the
accessed table, pair it with a randomly chosen comparison
operator (e.g., >, <, =), and assign a value sampled from
that column’s data as the condition. This simulates query
evolution in dynamic environments. Results in Table III show
that EDDIE achieves the lowest mean/95-th percentile Q-
error, as well as MAE, across all workloads. For instance, in
TPC-H, EDDIE attains a mean Q-error of 286.6 and 95th of
1266.7, significantly outperforming AMA-R (845.3, 5702.3),
LIB (398.8, 2986.0), and QF-I (975.7, 6453.3). These results
demonstrate EDDIE’s robustness in maintaining accurate under
shifting query patterns, extending its effectiveness beyond
static conditions. This advantage is primarily attributed to the
position-aware column and tree-based predicate encodings.

2) Schema Change: To investigate the resilience to schema
changes, we randomly alter 20% of the column names ac-
cessed by the queries in the test set. For example, a query
like SELECT a FROM A was transformed to SELECT a0
FROM A by replacing column a with a0, mimicking real-
world schema updates. As shown in Table III, again EDDIE
outperforms all baselines, achieving the lowest Q-error and
MAE metrics across datasets. It is worth noting that compared
with the results before the schema change (Table II), the
performance of EDDIE and LIB is unaffected; oppositely, QF-

I’s Q-error and MAE degrade drastically (e.g., mean Q-error
rises by more than 3x from 82.6 to 250.7 in TPC-DS). This
disparity occurs mainly because QF-I encodes columns by
their names, rendering it sensitive to unseen names, whereas
EDDIE leverages schema-agnostic encodings, contributing to
its robustness in handling schema changes.

3) Data Volume Shift: To assess the impact of data volume
shift, we adjust the scale factors of TPC-DS and TPC-H,
shrinking the original 10GB databases to 5GB, and re-sample
all test set queries on these smaller datasets to create new
test sets. This simulates real-world scenarios where data size
fluctuates. Due to the absence of a scale function in IMDB and
Redbench, experiments are not conducted on these datasets.
As reported in Table III, EDDIE consistently outperforms
baselines across TPC-DS, TPC-H and their extended versions.
For instance, in TPC-H+, EDDIE achieves a mean Q-error of
163.4, reducing by 43.2% over the second best method, i.e.,
LIB. These results demonstrate that EDDIE adapts effectively
to data volume changes. Such robustness property mainly
stems from the fact that EDDIE considers data statistics and
selectivity during its featurization process.

D. Changed Column Positions

A key strength of EDDIE lies in its column position-
awareness, which we will validate through index perturbation
experiments. Specifically, the method of index perturbation is
to perturb the index configuration of each sample (query, index
configuration) in the dataset, and then add the new sample
(query, perturbed index configuration) to the dataset. When
perturbing an index configuration, we reverse the column order

TABLE V: Ablation Study of EDDIE’s Components (with Initial Index Configurations)

Model
TPC-DS TPC-DS+ TPC-H TPC-H+ IMDB IMDB+ Redbench

Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE Q-error MAE95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean 95th/Mean
EDDIE 93.5/34.7 0.025 120.1/61.5 0.030 50.5/14.7 0.011 74.2/104.5 0.031 641.4/159.5 0.084 1159.0/228.8 0.087 857.7/188.9 0.099

w/o idx attn 93.6/37.2 0.026 128.5/63.7 0.032 76.3/17.9 0.012 94.9/115.2 0.034 900.2/184.2 0.091 1378.1/249.1 0.094 887.7/198.3 0.105
w/o histogram 96.0/34.8 0.026 125.3/66.6 0.032 53.8/15.3 0.012 81.5/113.1 0.034 705.4/163.3 0.085 1191.0/229.9 0.088 925.7/202.5 0.106
w/o statistics 101.5/37.8 0.025 146.4/62.3 0.034 54.8/15.5 0.013 86.8/111.9 0.033 656.8/163.1 0.085 1195.3/240.3 0.091 880.8/192.2 0.102
w/o predicate 97.8/37.3 0.025 126.9/63.7 0.031 59.7/15.8 0.013 95.1/131.3 0.037 817.7/185.2 0.089 1169.4/250.0 0.092 979.4/199.5 0.102
w/o output rows 123.1/46.4 0.026 121.4/61.9 0.031 58.0/15.2 0.012 87.3/124.9 0.036 695.3/169.7 0.086 1167.3/229.4 0.091 1027.1/211.6 0.105

for each index in the index configuration. For example, a two-
column index (a, b) is changed to (b, a).

The experimental results are shown in Table IV. We can
observe a clear trend that Q-error and MAE metrics are
increasing, compared with the datasets without index pertur-
bation (see Table II). Meanwhile, it is important to note that in
TPC-DS+, which additionally involves synthetic queries, the
baseline methods encounter a higher performance variation, in
contrast with the vanilla TPC-DS workload. Specifically, the
mean and 95th percentile Q-errors of LIB drastically degrade
from (103.1, 359.5) to (458.0, 4953.1). Conversely, EDDIE’s
performance is improved. Its mean and 95th percentile Q-
errors go in an opposite direction from (61.5, 120.1) to (74.2,
93.1). The trend is the same for the rest of the datasets
containing synthetic queries (TPC-H+ and IMDB+). The main
reason for this phenomenon is that there are fewer optimization
opportunities for indexes in TPC-DS, TPC-H, and IMDB,
which cannot reflect whether different methods are robust to
index perturbation, while in TPC-DS+, TPC-H+, and IMDB+,
there are more optimization cases related to index position.
Additionally, we can observe a significant deterioration of
LIB’s performance because it neglects the importance of
column position in SQL operators as exemplified in Sec-
tion II-C. EDDIE’s index-guided position encoding method
properly correlates the orders of the column in the index and
SQL operator, and consequently achieves a position-awareness
effect. Unsurprisingly, EDDIE’s estimation performance before
and after index perturbation is more stable.

E. Ablation Study

To understand the effectiveness of EDDIE’s two key com-
ponents, i.e., the two-dimensional attention mechanism and
novel featurization method, we have conducted the ablation
study as follows by disabling the index-dimension attention
and eliminating some input features.

1) Index-Dimension Attention: The original two-
dimensional attention involves index and plan dimensions.
To remove the index-dimension attention component from
EDDIE, we replace its corresponding embedding in the model
with zeros while keeping the remaining architecture intact.
As shown in Table V (w/o idx attn), this removal results in
a performance regression across all workloads. For instance,
in the TPC-DS+ workload, the mean and 95th percentile
Q-errors increase from 61.5 to 61.7, and from 120.1 to
128.5, respectively. Meanwhile, MAE increases from 0.030 to
0.032. Actually, this trend appears across all tested datasets,
highlighting the positive utility of the index-dimension
attention in improving the model’s accuracy.

2) Complexity of Input Features: In order to better predict
index benefit, EDDIE has judiciously mingled a rich set of
relevant features, such as histogram, data statistics, predicate,
and output rows (see Section IV). To verify the usefulness of
these features and evaluate our approach when these features
are sometimes not available in the real world (e.g., users do
not run ANALYZE to collect histograms), we have conducted
ablation studies by replacing the corresponding features with
zeros. Experimental results have been reported in Table V,
which shows that removing each of these features individually
will cause performance degradation, even though in some
cases the MAE metric is not impacted. Specifically, in TPC-
DS, the MAE, mean and 95-th percentile Q-errors increase
from (0.025, 34.7, 93.5) to (0.026, 34.8, 96.0) after removing
the histogram feature. The same phenomenon happens in other
workloads, indicating these features are beneficial to benefit
estimation, and should be considered whenever available.

F. Pre-training for Enhanced Accuracy
HTE’s key advantage is producing transferable features,

enabling pre-training and fine-tuning for index benefit estima-
tion. This enhances generalizability, resilience to schema/data
shifts, and reduces training data cost. To demonstrate the
effectiveness of this approach, we conduct an experiment
where the model was pre-trained on a diverse set of unseen
datasets and then fine-tuned on the target workload. The pre-
training datasets reuse 18 of the 20 datasets from [34], exclud-
ing TPC-H and IMDB to avoid overlapping with the target
workloads. For each dataset, 1000 queries are automatically
generated using the complex mode workload generator from
[34], and index configurations are generated as described in
Section VI-A2. Then, the model is fine-tuned on only 50% of
the training data from each target workload (TPC-DS, TPC-H,
and IMDB), with performance evaluated on the test set as is
conducted in Section VI-B. Then, we compare this fine-tuned
model with baseline models trained from scratch on 50% and
100% of the training data.

The results shown in Table VI prove the advantages of
HTE’s transferable feature representation. For example, in
TPC-DS, the model pre-trained and fine-tuned on 50% data
outperforms the baseline trained on 100% data, achieving a
mean Q-error of 39.1 and an MAE of 0.027, compared to
the baseline’s 44.9 and 0.028. Similar improvements can be
observed in TPC-H, IMDB and Redbench workloads.

G. Integration with Index Advisor
We further investigate EDDIE integrated with existing index

advisors. In this setup, we use AutoAdmin [24] as an advisor

TABLE VI: Performance of Pre-training and Fine-tuning

Dataset Metric From scratch
(50% Data)

From scratch
(100% Data)

Pre-trained
(50% Data)

TPC-DS Q-error 95th/Mean 275.8/73.3 162.2/44.9 157.6/39.1
MAE 0.035 0.028 0.027

TPC-H Q-error 95th/Mean 73.2/21.5 70.8/15.9 57.4/14.0
MAE 0.011 0.009 0.008

IMDB Q-error 95th/Mean 1621.5/303.9 1196.3/228.5 1194.5/219.1
MAE 0.123 0.102 0.098

Redbench Q-error 95th/Mean 1129.7/229.3 1078.7/214.9 1064.7/207.9
MAE 0.119 0.112 0.106

example, substitute its estimation part with EDDIE, PG 12’s
what-if-based estimator and LIB, respectively, and compare
the quality of their recommended optimal indexes. The exper-
iment is conducted using the workloads of TPC-DS, TPC-H,
IMDB, and Redbench, with the training and testing datasets
split by query and 5-fold cross-validation applied (consistent
with Section VI-B). For any test set, we divide its queries into
groups each with 5 queries. This way, we are able to evaluate
the efficacy of recommended indexes in the granularity of
query group (i.e., workload-level) rather than a single query.
To measure the quality of recommended indexes, we focus on
two metrics: a) total cost saving, which sums up the execution
cost reduction for all the query groups after applying the
recommended indexes; b) average improvement ratio, which
is the percentage of cost savings averaged over the groups.

As shown in Figure 6, EDDIE consistently outperforms PG
and LIB in terms of the two metrics across all four workloads.
For example, in TPC-DS, our method achieves a total cost
saving of 130s and an average workload improvement of
116.0%, outperforming both PG (66s, 5.4%) and LIB (69s,
8.7%). Besides, a much larger improvement is obtained under
Redbench, which has cloud query characteristics. These results
demonstrate that EDDIE not only offers more accurate index
benefit estimation but also attains superior end-to-end perfor-
mance in index tuning tasks. AutoAdmin searches the index
space with a unique policy and may produce interim candidate
indexes which EDDIE’s model never encountered. But EDDIE
is still able to achieve accurate prediction, showing its great
potential in generalizability and robustness.

VII. RELATED WORK

Index benefit estimation (IBE). Index optimization has
been an active research area for decades due to its great
value to query performance improvement. Recently, some
surveys, e.g., [2], [15], have dissected index advisors into
several components and summarized important works related
to each component. In this paper, we focus on one of the
key components, i.e., IBE, which can significantly affect
the quality of index recommendation. Existing IBE methods
can be mainly categorized into three types: what-if-based,
learning-based and hybrid. The first type requires databases to
have what-if capabilities [6], and has been adopted by several
commercial database products, like SQL Server [24] [7] and
DB2 [4]. However, this approach has been found to be time-
consuming [8], inaccurate [16], and have high CPU overhead,

TPC-DS TPC-H IMDB Redbench0

200

400

600

800

To
ta

l C
os

t S
av

in
g

(s
)

66 77 26 28569 101 18 250130 110 40 704

PostgreSQL LIB EDDIE

0%

10%

20%

30%

40%

50%

Av
er

ag
e

Im
pr

ov
em

en
t

Ra
tio

5.4%

20.2% 14.9% 16.4%

8.7%

24.1%

11.7%
15.0%

16.0%

26.7% 28.5%

43.9%

PostgreSQL LIB EDDIE

Fig. 6: E2E performance after integration with AutoAdmin

which can adversely affect user business on the database. The
second type aims to learn index benefit estimators through
ML models, thus completely avoiding what-if invocation.
Typical work is LIB [13], which unfortunately suffers from
low accuracy and poor generalization to changing workload
and column order. Our approach also falls into this type, but
addresses these important issues via an HTE approach. The
third type is a mix of the above two types, e.g., [12], [14],
[16], [29], [35], [36], which still rely on what-if calls but
utilize various ML techniques to overcome certain drawbacks
of what-if operations. For example, DISTILL [14] proposes
to filter out spurious what-if calls via a filtering model;
AIMeetsAI [16] leverages a classification model to avoid
performance regression due to what-if call’s cost estimation er-
rors; RIBE [29] develops a classification model called Change-
Former to predict query plan structure change, thus deciding
whether to launch what-if analysis or not; BALANCE [12]
and SWIRL [36] leverages Reinforcement Learning to adapt
to workload dynamics, but still relies on what-if calls to
determine rewards. Despite these optimizations, the hybrid
approaches still suffer from the limitations of what-if analysis,
i.e., inaccuracy of cost estimation and inability to apply to
databases without hypothetical indexes, like MySQL. What is
more, they have limited adaptability to environmental changes.
For example, SWIRL [36] can handle dynamic workloads, but
is sensitive to schema changes because operators in a query
plan are modeled based on text representations.

Learned cost estimation. Another lane of work related to
ours is learning-based query cost estimation, such as [25], [31],
[34], [37]–[39], in order to replace the traditional statistics-
based query optimizer. However, the objective of these ap-
proaches is to predict the query execution cost, rather than
index benefit, even though some works, e.g., E2E-Cost [25]
and Bao [31], also propose Graph Neural Network (GNN)-
based approaches to represent query plans. Because of this
difference, they neither represent indexes in their features, nor
consider the impact of candidate indexes on a query plan or
the interactions of multiple candidate indexes. Consequently,
they cannot be directly applied to the IBE problem.

VIII. CONCLUSION

We propose a hierarchical 2D encoding that yields transfer-
able, position-aware feature representations for accurate index
benefit estimation, achieving high accuracy and efficiency with
less training data via pre-training and fine-tuning. Also, our
method is robust under dynamic environments, and attains
superior end-to-end index tuning performance.

AI-GENERATED CONTENT ACKNOWLEDGEMENT

AI was not used to generate this paper’s content, including
text, figures, images, and code. However, AI was used as a
general-purpose writing aid to improve readability and cor-
rect grammar. All scientific contributions, including technical
ideas, methodology implementation, experimental design, and
paper writing, were independently developed by the authors.
We assume full responsibility for the content of this work.

REFERENCES

[1] G. Piatetsky-Shapiro, “The optimal selection of secondary indices is
np-complete,” SIGMOD Rec., vol. 13, no. 2, pp. 72–75, 1983.

[2] Y. Wu, X. Zhou, Y. Zhang, and G. Li, “Automatic database index tuning:
A survey,” IEEE Transactions on Knowledge and Data Engineering,
vol. 36, pp. 7657–7676, 2024.

[3] S. Das, M. Grbic, I. Ilic, I. Jovandic, A. Jovanovic, V. R. Narasayya,
M. Radulovic, M. Stikic, G. Xu, and S. Chaudhuri, “Automatically
indexing millions of databases in microsoft azure sql database,” in
Proceedings of the 2019 International Conference on Management of
Data, 2019, pp. 666–679.

[4] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley, “Db2
advisor: An optimizer smart enough to recommend its own indexes,”
in Proceedings of 16th International Conference on Data Engineering
(ICDE). IEEE, 2000, pp. 101–110.

[5] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin,
“Automatic sql tuning in oracle 10g,” in Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30, 2004, pp.
1098–1109.

[6] S. Chaudhuri and V. Narasayya, “Autoadmin “what-if” index analysis
utility,” ACM SIGMOD Record, vol. 27, no. 2, pp. 367–378, 1998.

[7] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and
M. Syamala, “Database tuning advisor for microsoft sql server 2005,”
in Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, 2005, pp. 930–932.

[8] S. Papadomanolakis, D. Dash, and A. Ailamaki, “Efficient use of the
query optimizer for automated physical design,” in Proceedings of the
33rd international conference on very large data bases, 2007, pp. 1093–
1104.

[9] K. Schnaitter, N. Polyzotis, and L. Getoor, “Index interactions in physi-
cal design tuning: modeling, analysis, and applications,” Proceedings of
the VLDB Endowment, vol. 2, no. 1, pp. 1234–1245, 2009.

[10] S. Botros and J. Tinley, High Performance MySQL, 4th ed. O’Reilly
Media, Inc., 2021.

[11] W. Zhou, C. Lin, X. Zhou, G. Li, and T. Wang, “Trap: Tailored
robustness assessment for index advisors via adversarial perturbation,” in
2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 2024, pp. 42–55.

[12] Z. Wang, H. Liu, C. Lin, Z. Bao, G. Li, and T. Wang, “Leveraging dy-
namic and heterogeneous workload knowledge to boost the performance
of index advisors,” Proceedings of the VLDB Endowment, vol. 17, no. 7,
pp. 1642–1654, 2024.

[13] J. Shi, G. Cong, and X.-L. Li, “Learned index benefits: Machine
learning based index performance estimation,” Proceedings of the VLDB
Endowment, vol. 15, no. 13, pp. 3950–3962, 2022.

[14] T. Siddiqui, W. Wu, V. Narasayya, and S. Chaudhuri, “Distill: low-
overhead data-driven techniques for filtering and costing indexes for
scalable index tuning,” Proceedings of the VLDB Endowment, vol. 15,
no. 10, pp. 2019–2031, 2022.

[15] W. Zhou, C. Lin, X. Zhou, and G. Li, “Breaking it down: An in-depth
study of index advisors,” Proceedings of the VLDB Endowment, vol. 17,
no. 10, pp. 2405–2418, 2024.

[16] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R. Narasayya,
“Ai meets ai: Leveraging query executions to improve index recom-
mendations,” in Proceedings of the 2019 International Conference on
Management of Data, 2019, p. 1241–1258.

[17] (2025) Index-only scans and covering indexes. [Online]. Available:
https://www.postgresql.org/docs/current/indexes-index-only-scans.html

[18] Y. Zhao, Z. Li, and G. Cong, “A comparative study and component
analysis of query plan representation techniques in ml4db studies,”
Proceedings of the VLDB Endowment, vol. 17, no. 4, pp. 823–835,
2023.

[19] H. Yuan, G. Li, L. Feng, J. Sun, and Y. Han, “Automatic view generation
with deep learning and reinforcement learning,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020,
pp. 1501–1512.

[20] Y. Zhao, G. Cong, J. Shi, and C. Miao, “Queryformer: A tree trans-
former model for query plan representation,” Proceedings of the VLDB
Endowment, vol. 15, no. 8, pp. 1658–1670, 2022.

[21] T. Parr, The definitive ANTLR 4 reference, 2nd ed. The Pragmatic
Bookshelf, 2013.

[22] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[23] S. Chaudhuri and V. Narasayya, “Anytime algorithm of database tuning
advisor for microsoft sql server,” 2020.

[24] S. Chaudhuri and V. R. Narasayya, “An efficient, cost-driven index
selection tool for microsoft sql server,” in Proceedings of the VLDB
Endowment, vol. 97. San Francisco, 1997, pp. 146–155.

[25] J. Sun and G. Li, “An end-to-end learning-based cost estimator,”
Proceedings of the VLDB Endowment, vol. 13, no. 3, pp. 307–319,
2019.

[26] J. Kossmann, S. Halfpap, M. Jankrift, and R. Schlosser, “Magic mirror
in my hand, which is the best in the land? an experimental evaluation
of index selection algorithms,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 2382–2395, 2020.

[27] S. Krid, M. Stoian, and A. Kipf, “Redbench: A benchmark reflecting
real workloads,” arXiv preprint arXiv:2506.12488, 2025.

[28] Hypopg. [Online]. Available: https://github.com/HypoPG/hypopg
[29] T. Yu, Z. Zou, W. Sun, and Y. Yan, “Refactoring index tuning process

with benefit estimation,” Proceedings of the VLDB Endowment, vol. 17,
no. 7, pp. 1528–1541, 2024.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR,
2015.

[31] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska,
“Bao: Making learned query optimization practical,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
1275–1288.

[32] R. Marcus and O. Papaemmanouil, “Plan-structured deep neural
network models for query performance prediction,” arXiv preprint
arXiv:1902.00132, 2019.

[33] R. O. Nambiar and M. Poess, “The making of tpc-ds.” in VLDB, vol. 6,
2006, pp. 1049–1058.

[34] B. Hilprecht and C. Binnig, “Zero-shot cost models for out-of-the-box
learned cost prediction,” Proceedings of the VLDB Endowment, vol. 15,
no. 11, pp. 2361–2374, 2022.

[35] X. Zhou, L. Liu, W. Li, L. Jin, S. Li, T. Wang, and J. Feng, “Autoindex:
An incremental index management system for dynamic workloads,” in
2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2022, pp. 2196–2208.

[36] J. Kossmann, A. Kastius, and R. Schlosser, “Swirl: Selection of
workload-aware indexes using reinforcement learning.” in EDBT, vol. 2,
2022, pp. 155–2.

[37] J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang, “Learned cardinality
estimation: A design space exploration and a comparative evaluation,”
Proceedings of the VLDB Endowment, vol. 15, no. 1, pp. 85–97, 2021.

[38] P. Li, W. Wei, R. Zhu, B. Ding, J. Zhou, and H. Lu, “Alece: An attention-
based learned cardinality estimator for spj queries on dynamic workloads
(extended),” arXiv preprint arXiv:2310.05349, 2023.

[39] Z. Liang, X. Chen, Y. Xia, R. Ye, H. Chen, J. Xie, and K. Zheng, “Dace:
A database-agnostic cost estimator,” in 2024 IEEE 40th International
Conference on Data Engineering (ICDE). IEEE, 2024, pp. 4925–4937.

https://www.postgresql.org/docs/current/indexes-index-only-scans.html
https://github.com/HypoPG/hypopg

	Introduction
	Background and Problem Statement
	Index Advisor and Index Benefit Estimation
	Problem Statement
	Motivating Example

	Overview
	Hierarchical and Two-dimensional Encoding
	L1: Identifier
	L2: Expression
	Predicate
	Ordered Column List

	L3: Plan Node
	L4: Two-dimensional Attention
	L5: Fusion

	Training and Implementation
	Estimation Model and Training
	Training
	Pre-train and Fine-tune

	Integration with Index Advisors

	Evaluation
	Experimental Setup
	Workloads
	Method of generating index configurations
	Baselines
	Model training
	Metrics
	Environment

	Prediction Accuracy
	Robustness
	Query Variation
	Schema Change
	Data Volume Shift

	Changed Column Positions
	Ablation Study
	Index-Dimension Attention
	Complexity of Input Features

	Pre-training for Enhanced Accuracy
	Integration with Index Advisor

	Related Work
	Conclusion
	References

