
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018 1571

Cost-Driven Scheduling for Deadline-Based
Workflow Across Multiple Clouds

Wenzhong Guo , Bing Lin , Guolong Chen, Yuzhong Chen, and Feng Liang

Abstract—With the development of cloud computing, the
coexistence of multiple cloud service providers appears in the
current cloud market. Due to heterogeneous instance types, dif-
ferent bandwidths and various price models among multiple
clouds, it is a challenging issue to schedule a deadline-constrained
scientific workflow across multiple clouds. Existing research for
workflow scheduling are mostly in the traditional distributed
computing environment (such as grid), and only a few primal
contributions are made in the cloud environment. This paper
proposes a scheduling strategy for a deadline-constrained scien-
tific workflow across multiple clouds. In order to minimize the
execution cost of the workflow while meeting its deadline, our
strategy utilizes the discrete particle swarm optimization tech-
nique, and adopts randomly two-point crossover operator and
randomly single point mutation operator of the genetic algo-
rithm. Besides, the strategy optimizes the performance for both
computation cost and data transfer cost across multiple clouds.
Our strategy is evaluated through well-known workflows, and
experimental results show that it performs better than other
state-of-the-art strategies.

Index Terms—Cloud computing, workflow scheduling, deadline
constraints, cost optimization.

I. INTRODUCTION

SCIENTIFIC applications are usually data-intensive and
computation-intensive, and they are composed of hun-

dreds of interrelated tasks [1]. Workflow model [2], [3] has
been an effective way to represent such complicated sci-
entific applications. Montage [4], for example, used several
workflows to generate a set of custom mosaics of sky cre-
ated by NASA. The workflows employed in scientific fields

Manuscript received December 14, 2017; revised June 15, 2018 and
September 11, 2018; accepted September 20, 2018. Date of publication
September 28, 2018; date of current version December 10, 2018. This work is
partly supported by the National Natural Science Foundation of China under
Grants No. 61672159 and No. U1705262. The associate editor coordinat-
ing the review of this paper and approving it for publication was Y. Diao.
(Corresponding author: Bing Lin.)

W. Guo, G. Chen, and Y. Chen are with the College of Mathematics
and Computer Sciences, Fuzhou University, Fuzhou 350108, China, also
with the Fujian Provincial Key Laboratory of Network Computing and
Intelligent Information Processing, Fuzhou University, Fuzhou 350108,
China, and also with the Fujian Collaborative Innovation Center for Big
Data Applications in Governments, Fuzhou University, Fuzhou 350003,
China (e-mail: fzugwz@163.com; cgl@fzu.edu.cn; yzchen@fzu.edu.cn).

B. Lin is with the College of Physics and Energy, Fujian Normal
University, Fuzhou 350117, China, and also with the Fujian Provincial
Collaborative Innovation Center for Optoelectronic Semiconductors and
Efficient Devices, Fujian Normal University, Xiamen 361005, China (e-mail:
wheellx@163.com).

F. Liang is with Department of Computer Science, University of
Hong Kong, Hong Kong (e-mail: loengf@connect.hku.hk).

Digital Object Identifier 10.1109/TNSM.2018.2872066

usually consist of several tasks connected with each other
through data/control dependencies [3]. It is challenging to
schedule tasks on their appropriate resources with data/control
dependencies in a workflow.

Workflow scheduling has been broadly studied for many
years in traditional environments [5]–[8], such as clusters
and Grid. Most of the previous works aggressively pur-
sued the minimum workflow makespan (i.e., total execu-
tion time) and the maximum resource utilization. With the
rapid development of cloud computing, many cloud service
providers have appeared in recent years, such as Amazon
EC2 [9], Rackspace [10] and GoGrid [11]. Cloud resources
are charged on demand, and resource acquisition in the cloud
environment considers both performance metrics and commer-
cial costs [12]. There are a few works [4], [5] addressing
workflow scheduling while considering commercial cost in
the cloud environment. In addition, most of them ignored
fundamental principles of cloud computing, such as the
elasticity [13] and the heterogeneity [14] of cloud resources.
It is difficult to schedule a workflow in the cloud environment
while considering basic cloud principles.

The fluctuation of virtual machine (VM) performance
increases the challenge of scheduling workflow on cloud
platforms [5]. Schad et al. [15] reported that the overall vari-
ability of CPU performance was 24% on Amazon’s EC2. It
will cause the workflow to miss its deadline and has a great
impact on scheduling decision. Many previous works made
a task mapping decision relying on the estimated task run-
time [6], [16], [17]. However, the actual task runtime is always
greater than the estimated runtime [15]. This delay will influ-
ence successors of each task and will not disappear until the
whole workflow finishes executing.

The deadline factor has a significant impact on the schedul-
ing strategy for scientific applications [18]. Different cloud
service providers exhibit a set of diversities regarding price
mechanisms, instance types and charge time interval, etc.
It usually has slow inter-bandwidth between two cloud
providers and fast intra-bandwidth within a cloud provider [5].
Moreover, it will take certain fees to transfer data from a cloud
provider to another one. When scheduling a workflow across
multiple cloud providers, it should consider not only diver-
sities of cloud services, but also different bandwidths and
data transfer cost.

Rodriguez and Buyya [5] proposed discrete particle swarm
optimization (PSO)-based strategy for scheduling a workflow
in a single cloud. It utilized a global optimization technique
to reduce the overall execution cost of a workflow while

1932-4537 c© 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0001-5874-4748
https://orcid.org/0000-0002-8542-9871


1572 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

satisfying its deadline constraint. Inspired by this work, our
strategy is also based on the PSO algorithm, which tends to
be effective in addressing NP-hard problems [19].

In this study, we develop an adaptive discrete PSO strategy
with genetic algorithm operators (ADPSOGA) for schedul-
ing a deadline-constrained scientific workflow across multiple
clouds. The main contributions of this study are summarized
as follows:
• Our strategy takes into account the more essential char-

acteristics of multiple clouds, such as the data transfer
cost among different cloud providers, the boot time and
shutdown time of VMs, and the inter-bandwidth between
different cloud providers.

• To avoid the premature convergence problem of tra-
ditional PSO, we introduce the randomly two-point
crossover operator and randomly single mutation oper-
ator of the genetic algorithm (GA), which can increase
the diversity of evolving populations.

• A new scheduling strategy is proposed to minimize the
execution cost of workflow while meeting its deadline
constrains across multiple clouds. This strategy optimizes
both data transfer cost and computation cost.

The rest of this study is organized as follows: some
related work is presented in Section II. Section III
describes the scheduling model in detail, and then
Section IV represents the proposed ADPSOGA algorithm.
In Section V, we compare our strategy with other state-of-
the-art strategies. Finally, Section VI makes some concluding
remarks.

II. RELATED WORK

Workflow scheduling in traditional distributed systems, such
as grid, has been investigated in depth in recent years. It
is a NP-hard problem [20], and there is no polynomial way
to obtain an optimal result unless P = NP. Hence, meta-
heuristic and heuristic strategies were employed to acquire
an approximately optimal solution. The optimal object for
workflow scheduling in the grid was usually to minimize the
makespan of workflow. Cao et al. [6] proposed an innova-
tive workflow scheduling strategy based on list scheduling
and group scheduling strategies. This strategy could decrease
the execution time of workflow and improve the resource
utilization in the grid environment. Chen and Zhang [7]
designed a workflow scheduling strategy based on Ant Colony
Optimization (ACO). They pursued to optimize the workflow
execution time and satisfy QoS requirements in the grids. In
addition, many works took into account the workflow budget.
Khajemohammadi et al. [8] presented a multi-objective genetic
algorithm to optimize both workflow cost and makespan. They
generated a feasible solution through developing a multi-level
workflow model. Yu and Buyya [16] also proposed a new
GA-based technique for workflow scheduling in utility grids,
but these proposed strategies aim at minimizing the work-
flow makespan while satisfying a defined-budget constraint.
Another cost-driven scheduling strategy for workflow in the
grid environment was proposed by Abrishami et al. [17]. They
aimed to minimize the execution cost of workflow based on

the strategy of scheduling all the tasks in a partial critical
path (PCP) on the specific VM.

The aforementioned strategies in the grid environment
afford a precious insight into the opportunities and challenges
for the workflow scheduling. However, there is a big gap
between grid and cloud in terms of resource provision mode.
Zhu et al. [21] presented an iterated heuristic framework to
schedule a workflow to elastic hybrid cloud resources, whose
optimization objectives are explored: number, usage time and
utilization of rented VMs. Malawski et al. [22] represented
both dynamic algorithm and static algorithm for schedul-
ing workflow ensembles in Infrastructure-as-a-Service (IaaS)
clouds. They attempted to improve the completion rate of
workflow ensembles while meeting both budget and deadline
constraints. They realized that the leased VM needed some
time to be ready for executing tasks. There was only one type
of VM in their work, and this assumption did not conform to
the reality of current cloud environment.

Mao and Humphrey [18] also focused on the workflow
ensembles scheduling in the clouds. There are many VMs
with different price/performance ratios for executing the tasks.
A dynamic strategy was represented to optimize the total
execution cost of workflow ensemble according to the pay-
as-you-go model. Although this was an efficient strategy for
minimizing the total execution cost of workflow ensemble,
the designed solution was not an optimal strategy for a single
workflow.

In recent years, many works [5], [13], [23] have adopted
PSO to address the workflow scheduling issue, and obtained
significant results. Wu et al. [23] represented a PSO-based
strategy for scheduling a single workflow in the clouds. They
aimed to reduce either makespan or cost while satisfying
either budget or deadline constraint. They acknowledged that
there were various VM types in the cloud environment. They
assumed that a number of initialized VMs were available
in advance and ignored the elasticity of resource provision.
Pandey et al. [13] also proposed a PSO-based strategy to
reduce the cost of scheduling a workflow in the clouds.
However, they also ignored the elasticity of resource provi-
sion. More in line with our work was the proposed strategy
for scheduling a single workflow in [5]. This strategy took
into account the fundamental cloud characteristics regarding
the heterogeneity of VMs, the leased delay of VMs and
price model. It utilized a global optimization technique to
reduce the overall execution cost of workflow while satisfying
the deadline constraint. However, this work only considered
the cost-driven scheduling for deadline-constrained workflow
in a single cloud. It ignored the bandwidth difference and
data transfer cost during workflow scheduling.

The definition of multi-cloud computing was first repre-
sented by Keahey et al. [24]. Fard et al. [25] designed
a workflow scheduling strategy in commercial multi-cloud
environment. This strategy optimized both makespan and
cost of workflow. They tailored their strategy for scheduling
a dynamic workflow suitably and obtained a prefect result.
Although they took into account the elasticity of resource pro-
vision, the heterogeneity of cloud resource was ignored in their
scheduling model. Zhang [26] proposed a resource scheduling



GUO et al.: COST-DRIVEN SCHEDULING FOR DEADLINE-BASED WORKFLOW ACROSS MULTIPLE CLOUDS 1573

TABLE I
THE ANALYSIS OF RELATED WORKS ON WORKFLOW SCHEDULING

strategy for workflow in wireless small clouds. This work
aimed to finish executing all tasks in a workflow at the earliest
time, and reduce the data transfer time between tasks executed
on different resources.

We have proposed a workflow scheduling strategy [27],
which also aimed to reduce the execution cost of work-
flow while satisfying its deadline constraint across multiple
clouds. This strategy adopted the PCP strategy and assigned
sub-deadlines to the PCPs instead of independent tasks. This
operation could reduce the data transfer time. In addition,
the strategy tried to find a best-fit instance to execute the
entire PCP before its latest finish time. This operation could
reduce the execution cost of workflow in commercial cloud
environment. This work adopted heuristics algorithm but not
meta-heuristics algorithm in this paper, and it did not consider
the performance variation in the fluctuant environment.

The analysis of related works and our work has been
summarized in Table I. The strategies are divided into 6 cat-
egories. The infrastructure types contain a grid, a cloud, or
multi-clouds, where the grid includes heterogeneous com-
puting systems and utility grids. The application types can
be jobs, single workflow, or workflow ensemble. The fluc-
tuation factors are divided into static and dynamic factors,
where static factor means that it is constant during execu-
tion. We only consider two related optimization objectives:
cost and time. The most commonly addressed constraints are
deadline and budget in scheduling strategies. Finally, we clas-
sify the scheduling strategies into mathematical programming,
heuristics, or meta-heuristics.

III. WORKFLOW SCHEDULING FRAMEWORK

Fig. 1 shows the workflow scheduling framework across
multiple clouds. There are three main components in our
scheduling framework, i.e., a deadline-constrained workflow,
multi-cloud environments, and a cost-driven scheduler.

A workflow for the scientific application can be mod-
eled as a directed acyclic graph (DAG) G = (V, E), where

Fig. 1. Workflow scheduling framework across multiple clouds.

Fig. 2. Sample workflow.

V = {t1, t2, . . . , tn} is defined as a finite set of n tasks, and
E = {eij = (ti , tj )|ti , tj ∈ V } is the set of directed arcs.
Each directed arc eij indicates that there is a data depen-
dency between task ti and task tj , and task tj cannot be
executed until task ti is finished. For an arc eij = (ti , tj ),
the task ti is the direct parent of task tj , and the task tj is
the direct child of task ti . Fig. 2 displays a sample workflow
with data dependency arcs, the number on which represents
the amount of transferred data between each pair of tasks. In
addition, a deadline constraint, D(G), is associated with its
workflow. A scheduling strategy is called the feasible solution
when a workflow is finished before its deadline according this
strategy.

There are various cloud service providers P =
{p1, p2, . . . , pr}, and each provider pi offers different types
of VMs. vmijk is defined as the kth launched VM with jth

type offered by provider pi across multiple clouds. Each VM
type has its particular processing capacity and memory storage.



1574 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

According to the VM memory consumptions obtained from
Amazon EC2 [28], we assume that each VM has enough
memory to process the workflow. This assumption means that
we only consider the processing capacity (i.e., CPUs) of VMs.
A task ti has an estimated execution time Texe (ti , vmijk ) on
vmijk , and each VM type from various providers has different
price/performance ratios for a given task [29]. We use serial
processing model, which means that a task is executed only on
one VM and a VM can only execute one task at the same time.

A new launched VM vmijk needs some boot time Tboot
(vmijk ) to be available for any tasks. This initialization time
has a great impact on workflow optimization scheduling [30].
A running VM does not shut down immediately until it com-
pletes all the tasks on it and transfer generated data to other
VMs [5]. In addition, the leased VM offered by a provider
pp is charged based on a specific time unit λp , and any par-
tial execution time should be considered as a full time period.
For instance, λp = 60 minutes, if a VM is employed for
121 minutes, the user should pay for 3 hours (i.e., 180 min-
utes). Also, each VM vmpkr with kth type offered by provider
pp has a corresponding cost cpk per time unit.

Due to the infrastructure from the same provider is mostly
kept in a local region and different providers’ VMs are
reserved in various areas [31], we assume that the inter-
bandwidth among different providers is slower than the intra-
bandwidth in a single provider. The intra-data transfer time,
Tintra (eij , pp), between task ti and its child tj in provider
pp is calculated as formula (1), and formula (2) describes the
inter-data transfer time, Tinter (eij , pp , pq ), between provider
pp and provider pq , respectively. Data(eij ) is the amount of
transferred data between task ti and its child tj . Bintra (pp) is
defined as the intra-bandwidth in provider pp and Binter (pp ,
pq ) represents the inter-bandwidth between provider pp and
provider pq , respectively. For simplicity, the intra-bandwidth
among VMs is roughly the same, and the inter-bandwidth has
no difference with each other [25]. The bandwidth in a single
VM is assumed to be infinite [5], therefore the Tintra (eij , pp)
will be 0 if task ti and its child tj are both scheduled on the
same VM.

Tintra
(
eij , pp

)
=

Data(eij )
Bintra

(
pp

) , (1)

Tinter
(
eij , pp , pq

)
=

Data(eij )
Binter

(
pp , pq

) . (2)

Data transfer cost between two different providers will
affect the final scheduling decisions [27], [32]. cpp ,pq is
defined as the data transfer cost per GB between provider
pp and pq . Almost every provider in current cloud market
ignores the local data transfer fee in a single cloud [18]. We
ignore extra fee for other services such as resource monitoring,
data storage and auto-scaling workload, which are inappre-
ciable compared with computation cost and data transfer
cost [22].

The scheduler aims to minimize the workflow execution
cost including computation cost and data transfer cost while
satisfying its deadline constraint across multiple clouds. The
whole scheduling strategy is defined as S = (R,M ,Ctotal ,
Ttotal ), where R = {vm1, vm2, . . . , vmr} is a set of

Fig. 3. A scheduling solution for the workflow displayed in Fig. 2.

leased VMs from various providers, M = {(ti , vmj )|ti ∈
V , vmj ∈ R} represents the mappings from tasks to their
corresponding VMs, Ctotal is the total workflow execu-
tion cost, and Ttotal is the total workflow execution time.
Fig. 3 shows a scheduling solution for the workflow dis-
played in Fig. 2. The workflow tasks occupy three VMs
(i.e., R = {vm1, vm2, vm3}), which come from two dif-
ferent providers (i.e., pp and pq ). The mapping result is
M = {(t1, vm1), (t2, vm3), (t3, vm2), . . . , (t8, vm3)}. Each
VM has its corresponding turn-on time Ton (vmi ), turn-off
time Toff (vmi ), and VM type type (vmi ). A task ti has
its actual end time AET (ti ) after being scheduled, and the
workflow execution time can be calculated after all tasks are
scheduled. Therefore, the total workflow execution cost Ctotal
and the total workflow execution time Ttotal are described as
formula (3) and formula (4), respectively.

Ctotal =
|R|∑

i=1

ctype(vmi ) ·
⌈

Toff (vmi ) − Ton(vmi )
λp(vmi )

⌉

+
n∑

j=1

n∑

k=j+1

cp(tj ),p(tk ) · Data(ejk ) · sjk , (3)

Ttotal = max
ti∈G

{AET (ti )}. (4)

The front part of formula (3) represents the computation
cost, and the rear part is the data transfer cost. ctype(vmi )
is the vmi cost per time unit, and p (vmi ) is the provider
owning vmi . In addition, the task tk is the child of task tj ,
and p(tj )/p(tk ) represent the provider executing task tj /tk . sjk
is 0 whenever both task tj and task tk are scheduled in the
same provider or 1 otherwise.

According to the previous definitions, the optimization
scheduling problem can be formally described as follows:
acquire a scheduling strategy S with minimum Ctotal across
multiple clouds while Ttotal does not exceed the deadline con-
straint D(G). Formula (5) shows this single-object problem
with single constraint.

Minimize Ctotal

subject to Ttotal ≤ D(G). (5)

Table II defines the symbols used in this paper.

IV. PROPOSED STRATEGY

In this section, we first introduce the basic particle swarm
optimization algorithm, and then describe our proposed
ADPSOGA algorithm in detail.



GUO et al.: COST-DRIVEN SCHEDULING FOR DEADLINE-BASED WORKFLOW ACROSS MULTIPLE CLOUDS 1575

TABLE II
SYMBOLS DEFINITION

A. Particle Swarm Optimization

PSO is an evolutionary computation technique inspired by
the social behavior of bird flocks. It was first presented by
Kennedy and Eberhart [19] in 1995 and has been broadly uti-
lized and investigated ever since. The particle is the most
important concept in PSO. A particle represents a candi-
date solution that can move through the optimization problem
space. Each particle has its own velocity, which will determine
its future direction and magnitude. This velocity is affected
by the particle’s personal best position pBest and the popula-
tion’s global best position gBest. A fitness function, fit(Xi ), is
used to evaluate the quality of a particle Xi . Each particle is
determined by its velocity and position, and they update their
velocities and positions iteratively described as formula (6)
and formula (7).

V t+1
i = w × V t

i + c1r1
(
pBest t

i
− X t

i

)

+ c2r2
(
gBest t − X t

i

)
, (6)

X t+1
i = X t

i + V t+1
i . (7)

t is the current iteration of evolutionary population. V t
i and

X t
i represent the velocity and position of i th particle at tth

iteration. In general, a maximum velocity Vmax is defined to
ensure that the particle moving space is in the range of solution
space. In addition, the inertia weight w determines how much
the previous velocity can affect the current velocity. It has
a significant impact on the algorithm’s convergence. The two
acceleration coefficients (i.e., c1 and c2) represent the particle
cognitive ability to their personal best value and global best
value. In order to enhance the randomness of searching space,
the algorithm introduces two random numbers (i.e., r1 and r2)
whose value is both between 0 and 1.

PSO is usually used to solve the continuous problem [23].
Workflow scheduling is a discrete problem and requires a new
problem coding strategy and fitness evaluation function.

B. ADPSOGA Algorithm

The proposed ADPSOGA algorithm is illustrated from the
following seven parts.

1) Problem Encoding: To improve the algorithm
performance and enhance its searching efficiency, a good

Fig. 4. A particle encoded for a workflow scheduling plan.

encoding strategy should satisfy the following three
principles [33].

Definition 1 (Completeness): each candidate solution for the
problem can be encoded as a particle.

Definition 2 (Viability): each particle represents a corre-
sponding candidate solution.

Definition 3 (Non-Redundancy): there is a one-to-one cor-
respondence between a particle and a candidate solution.

An encoding strategy satisfying the above mentioned three
principles is difficult. Inspired by the work in [5], we use
a provider-type-VM-order nested strategy to encode the work-
flow scheduling problem. A particle represents a workflow
scheduling strategy, and the i th particle in tth iteration is shown
in formula (8).

X t
i =

(
x t
i1, x

t
i2, . . . , x

t
in

)
, (8)

x t
ik =

(
p, vmpj , vmpjr , ord

)t
ik

. (9)

The x t
ik (where k = 1, 2, . . . , n) represents the kth task

assignment, which is described as formula (9). Therefore, the
particle dimension is three times of the number of tasks. The
combination (p, vmpj , vmpjr , ord) means the provider, VM
type, execution VM and scheduling order of task, respec-
tively. The value of the first three coordinates can range from
0 to its corresponding maximum number, and the value of
the last coordinate ranges from 0 to n-1. When two tasks
without data dependency are scheduled on the same virtual
machine, the task with smaller order is executed first. The
ord of each task in an encoded particle is different, which
can guarantee the ‘Non-redundancy’ principle. For example,
Fig. 4 shows a particle encoded for scheduling a workflow
with eight tasks across multiple clouds. We assume that there
are three providers and each provider has eight types of VM,
so the p coordinate is from 0 to 2, and the vmpj coordinate
is from 0 to 7. Fig. 4 tells us that task t1 is scheduled on
vm000 with vm00 type in provider 0, and task t2 is scheduled
on vm012 with vm01 type in provider 0.

Our encoding strategy meets the ‘Completeness’ and ’Non-
redundancy’ principles. Each dimension of a particle repre-
sents the allocated location (VM) for the corresponding task.
Therefore, each particle represents a candidate solution for the
problem. Due to the provider-type-VM-order nested strategy,
an encoded particle has only one corresponding scheduling
strategy, and a scheduling strategy can only be encoded into
a specific particle. However, the encoding strategy fails to sat-
isfy the ‘Viability’ principle. For instance, the execution time
of some workflow scheduling plans may exceed its deadline
constraint.

2) Initial Resource Pool: Due to the dynamicity and elas-
ticity of the resource supply model across multiple clouds,
there is no initial resource set as an input for our strategy.



1576 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

Setting an initial resource pool Rinitial too large will increase
the search space and extend the convergence of PSO. It may
fail to find a feasible solution if the Rinitial is too limited.
Therefore, it is important to initialize an appropriate resource
pool, which can not only improve the algorithm convergence
but also guarantee the solution integrity.

A simple and available strategy for initializing the resource
pool is to allocate one of each VM type for each task. Notice
that this initialization strategy can guarantee the diversity and
integrity of the algorithm. However, this strategy has large
search space and increases the algorithm complexity.

In order to maintain the integrity of all possible solutions
and reduce the search space, we design a suitable strategy and
the size of Rinitial is |Spar(G)|∗Numtype(vm) (where Spar(G)
is the set including the maximum number of tasks that can be
executed in parallel), and Numtype(vm) is the amount of all
VM types from multiple providers defined as follows.

Numtype(vm) =
P∑

p

Numvm(p). (10)

Numvm(p) is the amount of all VM types from provider p.
Therefore, this strategy makes sure that each task has the
chance to select one VM of each type. In addition, we adopt
the BFS [34] to calculate Spar(G) in this study.

3) Fitness Function: The fitness function fit(Xi ) is used
to estimate the advantage and disadvantage of all the can-
didate solutions. In general, the fitness function with lesser
value represents a better solution. Our candidate solutions
may break the ‘Viability’ principle as described before, there-
fore we should consider the failed situation while defining
the fitness function. We incorporate the constrained-processing
strategy [35] and compare two possible solutions in three
different situations.

Situation 1: If one solution is feasible and another is unfea-
sible, it is undisputed to select the feasible one. The fit(Xi )
is defined as formula (11), where Ttotal(Xi) is the workflow
execution time of ith particle.

fit(Xi ) =
{

0, if Ttotal(Xi ) ≤ D(W )
1, else

, (11)

Situation 2: If both solutions are unfeasible, the solu-
tion with less workflow execution time will be selected. The
scheduling plan with less makespan is more likely to meet the
deadline constraint.

fit(Xi ) = Ttotal(Xi ), (12)

Situation 3: If both solutions are feasible, it is better to select
the cheaper one. The fit(Xi ) is defined as formula (13), where
Ctotal(Xi) is the workflow execution cost of ith particle.

fit(Xi ) = Ctotal(Xi ). (13)

4) Update Strategy: PSO has three main components:
inertia, individual cognition and social cognition, which are
shown in formula (6). The introduction of the crossover and
the mutation operator of GA greatly enhances the search
capability of PSO, which explores a wider solution space.
Therefore, ADPSOGA overcome the premature convergence

Fig. 5. Mutation operator for the inertia component.

of traditional PSO. The new update strategy is shown in for-
mula (14), where Mu () represents the mutation operator, and
Cg (), Cp() are both the crossover operators. The ord of each
task keeps the original value, so we only update the first three
coordinates.

X t
i = c2 ⊕ Cg

(
c1 ⊕ Cp

(
w ⊕ Mu

(
X t−1

i

)
, pBest t−1

i

)
,

× gBest t−1
)
, (14)

The inertia component incorporates the mutation operator
of GA, and the updated inertia part is shown in formula (15),
where r1 is a random number between 0 and 1. Mu () ran-
domly selects an index in the particle and changes the index
value irregularly but in the range of defined maximum value.
Fig. 5 illustrates the mutation operator with particle shown
in Fig. 4. It selects the second task as a mutation object
(mp1), and the corresponding scheduling parameter changes
from (0, 1, 2) to (1, 2, 0), which meets the changing criteria.

At
i = w ⊕ Mu

(
X t−1

i

)
=

{
Mu

(
X t−1

i

)
, if r1 < w

X t−1
i , else

,

(15)

The individual cognition component and social cognition
component both incorporates the crossover operator of GA,
and the updated results are described formula (16) and for-
mula (17), respectively. r2 (or r3) is a random number between
0 and 1. Cp() (or Cg ()) randomly selects two indexes in
the mutated particle and crossovers it with the pBest (or
gBest) particle between the two indexes. Fig. 6 illustrates the
crossover operator for the individual (or social) cognition com-
ponent. It randomly selects two indexes (i.e., cp1 and cp2), and
replaces the old particle value between cp1 and cp2 with the
pBest (or gBest) particle value.

B t
i = c1 ⊕ Cp

(
At

i , pBest t−1
)

=
{

Cp
(
At

i , pBest t−1
)

r2 < c1

At
i else,

(16)

C t
i = c2 ⊕ Cg

(
B t

i , gBest t−1
)

=
{

Cg
(
B t

i , gBest t−1
)

r3 < c2

B t
i else.

(17)

5) A Particle to a Schedule Mapping: Algorithm I shows
the pseudo-code for translating a particle position to a sched-
ule. Its inputs are workflow W, initial resource pool Rinitial
and particle X. First, it initializes four elements of the schedul-
ing strategy S in line 1. After initialization, the algorithm



GUO et al.: COST-DRIVEN SCHEDULING FOR DEADLINE-BASED WORKFLOW ACROSS MULTIPLE CLOUDS 1577

Fig. 6. Crossover operator for the individual (social) cognition component.

Algorithm 1 A Particle to a Schedule Mapping
procedure Schedule_Generation(W, Rintial , X)
1: initialize: R ← null, M ← null, Ctotal ← 0, Ttotal ← 0
2: calculate Texe [|W | × |Rintial |]
3: calculate Tintra [|W | × |W |], Tinter [|W | × |W |, |P | × |P |]
4: for i = 0 to i = |W|-1
5: ti = W [i ], rX (i) = Rintial [X (i)]
6: if ti has no parents then
7: if rX (i) does not exist then
8: launch rX (i), LETrX (i) = Tboot (rX (i)), Ton (rX (i))

= LETrX (i) - Tboot (rX (i))
9: end if
10: STti = LETrX (i)
11: else
12: call Max_Parents (ti ), maxT = Max_Parents(ti )
13: if rX (i) is not exist then
14: launch rX (i), LETrX (i) = max(maxT ,Tboot (rX (i))),

Ton (rX (i)) = LETrX (i)-Tboot (rX (i))
15: end if
16: STti = max(maxT ,LETrX (i))
17: end if
18: exe = Texe [i][X(i)]
19: foreach child tc of ti do
20: if tc , ti are scheduled in the same cloud but different VMs then
21: transfer+ = Tintra [i][c]
22: else if tc , ti are scheduled in different clouds then
23: transfer+ = Tinter [i][c][p][q]
24: end if
25: end for
26: ETti = STti + exe + transfer
27: M = M ∪ (ti , rX (i), STti , ETti )
28: if rX (i) /∈ R then
29: R = R ∪ {rX (i)}
30: end if
31: LETrX (i) = LETrX (i) + exe + transfer
32: end for
33: calculate Ctotal and Ttotal according to formula (3) and (4), respectively
34: output Ctotal and Ttotal
end procedure

calculates the estimated execution time of each task on every
type of VM resource in line 2. This is represented as a matrix,
where the columns represent the initial resources, the rows
represent the tasks and the entry Texe [i][j] represents the
estimated execution time of task ti on VM vmj . Also, the
intra-data transfer estimated time and the inter-data transfer
estimated time are calculated as matrixes in line 3. Tintra [i][j]
represents the estimated data transfer time from task ti to task
tj in a single cloud, and Tinter [i][j][p][q] represents the esti-
mated data transfer time from task ti in the cloud p to task tj
in the cloud q.

At this moment, the algorithm has the whole information
for decoding the particle position and generating a candidate
schedule. It iterates through each index i in a particle X and

Algorithm 2 A Task Waiting Time and Data Transfer Cost
procedure Max_Parents(ti )
1: initialize: Twait ← 0, Ctranfer ← 0
2: foreach parent tp of ti do
3: if tp and ti are scheduled in the same cloud but different VMs then
4: Twait = max (Twait ,Tintra [p][i])
5: else if tp and ti are scheduled in different clouds then
6: Twait = max (Twait , Tinter [ p][i][ p][ q] )
7: Ctranfer+= Data (epi )*cq,p
8: end if
9: end for
10: output Twait , Ctranfer
end procedure

generates the R and M step by step. The algorithm firstly deter-
mines that the task ti is scheduled on the resource rX (i) based
on the Problem encoding part in line 5. The encoding strategy
shows that the index i corresponds to the task ti and its value
X(i) corresponds to the resource rX (i). Then, the estimated
start time STti of task ti is calculated in lines 6-17. There are
two scenarios for calculating the STti :

a) If task ti has no parent, it can be executed as soon as the
VM rX (i) is available. Therefore, the STti of task ti is equal
to the VM rX (i) already-leased time LETrX (i). In addition,
if the VM rX (i) does not exist, it should be launched and
LETrX (i) is equal to the booting time Tboot (rX (i)).

b) If task ti has one or more parents, it can be executed after
all of its parents have been completed and the output data is
transferred to VM rX (i). The algorithm calls Max_Parents
(ti ) procedure to calculate the waiting time of task ti and the
data tranfer cost from its parents. In addtion, the algorithm
also consider whether the VM rX (i) is available or not.

After obtaining the estimated start time STti of task ti ,
the algorithm calculates the estimated end time ETti of
task ti based on its execution time and data transfer time
in lines 18-26. There are three scenarios for calculating the
data transfer time of task ti :

a) If task ti and its child task tc are scheduled on the same
VM, the data transfer time is 0.

b) If task ti and its child task tc are scheduled on different
VMs but in the same cloud, the data transfer time is equal to
Tintra [i][c].

c) If task ti and its child task tc are scheduled on different
clouds (i.e., cloud p and cloud q), the data transfer time is
equal to Tinter [i][j][p][q].

Finally, the new four elements of mapping result are added
to the mapping set M in line 27. The algorithm also determines
whether the VM rX (i) is added to the leased resource set R
or not in lines 28-30. The newest already-leased time of VM
rX (i) is equal to the estimated end time of task ti in line 31. In
addition, the algorithm calculates Ctotal and Ttotal according
to the formula (3) and formula (4) in line 33. It outputs the
final scheduling strategy S in line 34.

Algorithm II shows the pseudo-code for calculating a task
waiting time and data transfer cost. The waiting time of a task
ti is equal to the maximum data transfer time from all its
parents in lines 3-6. If a task ti and its parent tp are scheduled
in different clouds, the data transfer cost should be considered
in line 7.



1578 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

6) Parameter Settings: The inertia weight w described in
formula (6) determines the local (or global) searching capacity
of PSO. With the smaller inertia weight w, PSO has a bet-
ter local searching capacity. Otherwise, PSO has a better
global searching capacity. In the initial stage, the algorithm
focuses on the diversity of candidate solutions (i.e., the global
searching capacity). The algorithm pays more attention to the
convergence and local searching capacity in the later stage.
Therefore, the value of inertia weight should be reduced with
the increase of the iteration. The formula (18) is a classical
tuning strategy for the inertia weight w [36]. The wmax is the
maximum initialization value of w, and wmin is the minimum
value of w, respectively. The iterscur is the current iteration,
and itersmax is the defined maximum iteration.

w = wmax − iterscur × wmax − wmin

itersmax
, (18)

The inertia weight described in formula (18) is only related
to the iteration, and it cannot meet the nonlinearity and com-
plexity of our problem. The inertia weight actually needs to
update based on the particle performance. Therefore, an adap-
tive tuning strategy according to the particle gap is designed
for the inertia weight. A particle gap compared with the global
best position at t-1th iteration is shown in formula (19), where
div(X t−1, gBest t−1) represents the number of different x t

k
value between X t−1 and gBest t−1, and T is the number of
workflow tasks. The adaptive tuning strategy for inertia weight
is described in formula (20).

d
(
X t−1

)
=

div
(
X t−1, gBest t−1

)

3 · T , (19)

w = wmax − (wmax − wmin)

× exp
(
d
(
X t−1

i

)
/
(
d
(
X t−1

i

)
−1.01

))
. (20)

When the value of d(X t−1) is small (i.e., there is small
gap between current particle and the global best particle), the
value of inertia weight w is small and the optimized solu-
tion is searched in local area. On the other hand, the value of
inertia weight w is increased and it can enhance the searching
range and find the optimized solution earlier.

In addition, the other two acceleration coefficients (i.e.,
c1 and c2) are defined as formula (21) and formula (22). They
are based on the linear increase (or decrease) strategy [36].

c1 = c1_start − c1_start − c1_end
itersmax

× iterscur , (21)

c2 = c2_start − c2_start − c2_end
itersmax

× iterscur . (22)

c1_start, c2_start are the initialization value of c1, c2 at the
start iterative phase, and c1_ end, c2_ end are the initialization
value of c1, c2 at the end iterative phase.

7) Algorithm Flowchart: Fig. 7 shows the proposed
ADPSOGA algorithm flowchart and the detailed steps are
summarized as follows:

Step 1: It initializes the relevant parameters such as popula-
tion size, maximum iterations, inertia weight and acceleration
coefficients. In addition, it generates the initialization popula-
tion of particles.

Fig. 7. ADPSOGA algorithm flowchart.

Step 2: It generates a workflow schedule according to the
‘a particle to a schedule mapping’ part, and then calculates the
fitness value of each particle based on the formula (11), for-
mula (12) and formula (13). Moreover, it selects the personal
best position pBest and the global best position gBest.

Step 3: It updates each particle based on the formulas in
‘update strategy’ part.

Step 4: It recalculates the fitness value of each particle. If the
current value of particle is better than its pBest, the algorithm
substitutes the current value for the particle pBest. Otherwise,
it jumps to Step 6.

Step 5: If the current value of particle is better than the
population gBest, the algorithm substitutes the current value
for the population gBest.

Step 6: It goes to Step 3 until the stop criterion (i.e., the
iteration is equal to the maximum iterations) is met.

V. PERFORMANCE EVALUATION

We conducted all the simulation experiments on 64-bit
Win7, which is configured with 8GB memory and 2.30GHz
frequency CPU. The particle number and the maximum
iteration were set to 100 and 1000, respectively. We defined
c1_start = 0.9, c1_end = 0.2, c2_start = 0.4 and
c2_end = 0.9 based on the progressive setup [36], and these
parameters were used in the rest of this work. We then
described the experimental setup, the competitive algorithms
of ADPSOGA and its performance results.

A. Experimental Setup

With the purpose of assessing our proposed strategy, it is
better to measure it with the real-world workflows. However,
there is no available library of such workflows for our experi-
ments. We conducted our experiments with the help of five
partly synthetic workflows (i.e., Epigenomics, CyberShake,
Montage, SIPHT and LIGO), which were investigated in depth



GUO et al.: COST-DRIVEN SCHEDULING FOR DEADLINE-BASED WORKFLOW ACROSS MULTIPLE CLOUDS 1579

TABLE III
THE BANDWIDTH BETWEEN TWO DIFFERENT CLOUDS

by Bharathi et al. [37]. They also described the basic task run-
time, data transfer amount and relations between tasks in each
workflow, which came from five different scientific areas such
as genome sequence processing, earthquake science, astron-
omy, bacterial replica and gravitational physics. Therefore, the
five workflows have different properties in terms of compo-
sition and components. There are four different numbers for
each workflow type in a file of XML format,1 from which
we chose three sizes for the experiments in this study: Tiny
(about 30 tasks), Small (about 50 tasks) and Medium (about
100 tasks) [38]. In addition, it was not 100 percent accurate
to estimate the execution time of each task and we assumed
that the task size was based on a normal distribution with
a variation of ±10 percent [5].

In this study, the VM performance was primarily measured
by the corresponding processing capacity (i.e., CPUs) [22].
There were three clouds (i.e., EC2 (C1), Rackspace (C2),
GoGrid (C3)) in our experiments, and we assumed that each
cloud provided 8 VM types with specific processing capacity
and cost per hour. VM processing capacity is roughly propor-
tional to its cost, therefore we assumed that the fastest VM
was coarsely 5 (8 or 10) times faster than the slowest one, and
the fastest VM was coarsely 5 (8 or 10) times more expensive
in the cloud C1 (C2 or C3) [27]. The cost of the cheapest
VM in every cloud was the same, and each VM type had
various price to performance ratio for the tasks [28]. Every
one-third of tasks had better price to performance ratio in one
cloud compared with the other two. According to the VM
performance variations [15], the VM processing capacity was
reduced at most 24 percent based on a normal distribution with
a standard deviation of 10 percent and mean 12 percent.

Moreover, the intra-bandwidths in a single cloud were
20 MBps based on the analysis from Amazon services [31].
The inter-bandwidths between every two different clouds were
represented in Table III, which were measured based on the
iperf2 tool. We also assumed that the data transfer variation of
bandwidth was degraded at most 19 percent based on a normal
distribution with a standard deviation of 5 percent and mean
9.5 percent [15]. The boot time of each VM was set to 97 sec-
onds and the cost period was one hour [10]. The data transfer
cost per GB for different clouds were shown in Table IV,
which were excerpted from their own official website [27].

Finally, each workflow needs a specific deadline to verify
the scheduling strategy. In order to complete the workflow
within its deadline across multiple clouds, we conducted our
experiments using five different deadlines as follows:

Di (G) = ri · Min(G), i = {1, . . . , 5}. (23)

1https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
2http://iperf.sourceforge.net/

TABLE IV
THE DATA TRANSFER COST BETWEEN TWO DIFFERENT PROVIDERS

where Min(G) was the makespan of workflow G according to
the HEFT method [39], and ri was the value selected from
the deadline set Sdeadline = {1.5, 2, 5, 8, 15}.

B. The Competitive Algorithms

As far as we know, there are no similar strategies designed
for the problem described in Chapter 3. In order to verify the
ADPSOGA algorithm, we modified the static MCPCPP [27]
and PSO-based strategy [5] to adapt the multi-cloud environ-
ment.

Our previous work presented a workflow scheduling strat-
egy (it was called Multi-cloud Partial Critical Paths with
Pretreatment, MCPCPP), which also tried to minimize the
workflow execution cost while meeting its deadline con-
straint across static multiple clouds. This strategy assigned
sub-deadlines to the PCPs instead of independent tasks. This
operation could reduce the data transfer time along the PCPs.
Furthermore, it tried to find a ‘best-fit instance’ to execute
the entire PCP before its latest finish time. This operation
adapted to the new price model in commercial cloud environ-
ment. There were three important components in the MCPCPP
algorithm. Firstly, in order to reduce the algorithm complexity
and compress the data transfer time preliminarily, every two
adjacent tasks with a common ‘directed cut-edge’ would be
merged into a single task based on the workflow structure.
Secondly, the partial critical paths with sub-deadline con-
straints would be found based on the ‘critical parent’ iterative
mechanism. Thirdly, the ‘best-fit’ instances were allocated to
each found partial critical path and all the tasks on the path
were scheduled to its corresponding instance.

The MCPCPP algorithm focused on the workflow schedul-
ing across the static multiple clouds, and it ignored that
a running VM could not be shut down immediately until all the
output data had been transferred to other VMs [5]. Therefore,
we extended the MCPCPP algorithm with considering the
boot time and shut down time of VMs in the comparative
experiments.

On the other hand, the PSO-based algorithm tried to achieve
the same aim as this study in a single cloud. It adopted the
traditional encoding strategy based on the continuous update
strategy in formula (6). The integer part of each coordinate
value in a particle corresponded to a specific VM. In order
to be compared with our proposed algorithm, the PSO-based
algorithm was extended to adapt the multi-cloud environment
with less modification (it was called Workflow Scheduling
with PSO, WPSO). The overall framework of new modified
WPSO algorithm was the same as the traditional PSO-based
algorithm. The WPSO also determined the maximum parallel
tasks in a workflow and initialized the initialization resource



1580 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

TABLE V
THE AVERAGE ITERATIONS OF DIFFERENT ALGORITHMS WHEN

ACHIEVING gBest WITH D1(G)

pool, but this pool contained all the VM types across multiple
clouds. Notice that the WPSO should consider the data trans-
fer cost between two different clouds. The parameters setup
of WPSO (i.e., inertia weight and acceleration coefficient) was
the same as the PSO-based algorithm [3]. There were no mod-
ifications other than the discussions above for the competitive
WPSO algorithm.

Finally, in order to test the function of ‘parameter
settings’ part in our proposed ADPSOGA algorithm, we
adjusted the inertia weight and two acceleration coefficients
in ADPSOGA according to the static definition strategy [3].
The new generated competitive algorithm (it was called
Particle Swarm Optimization with Genetic Algorithm oper-
ators, PSOGA) also took into account the data transfer cost
between two different clouds.

C. Performance Results

In order to test the performance of four different algorithms
(i.e., MCPCPP, ADPSOGA, WPSO and PSOGA) across fluc-
tuant multiple clouds, we generated the fluctuant factors based
on their corresponding distribution functions. Each test case
executed 100 times, which could promote the comprehensive
assessment for each scheduling algorithm.

In addition, the five workflow types have different struc-
tures and characteristics, and it is better to normalize the
workflow cost in our competitive experiments. Therefore, we
introduced the normalized workflow cost NWC(G) in for-
mula (24), where the TEC(G) was the total execution cost
of workflow G with a specific scheduling algorithm, and the
CSC(G) was the cheapest scheduling cost of workflow G with
cheapest scheduling strategy [38].

NWC (G) =
TEC (G)
CSC (G)

. (24)

The average iterations of different PSO-based algorithms
when arriving in their corresponding gBest are shown from
Table V to Table VII, which have different deadline con-
straints. With a fast view on the three tables, the iterations
of three PSO-based algorithms (i.e., ADPSOGA, WPSO and
PSOGA) do not decrease obviously with the weakening of
deadline constraint. Note that the problem encoding and update

TABLE VI
THE AVERAGE ITERATIONS OF DIFFERENT ALGORITHMS WHEN

ACHIEVING gBest WITH D3(G)

TABLE VII
THE AVERAGE ITERATIONS OF DIFFERENT ALGORITHMS WHEN

ACHIEVING gBest WITH D5(G)

strategy have a great influence on the iteration, and the dead-
line constraint has little impact on the iteration. With the
increase number of tasks in a workflow, the average itera-
tions of three algorithms when arriving in their corresponding
gBest have been grown. This is mainly due to the popula-
tion diversity, whose scale enlarges by expanding the encoding
dimensions. The more number of tasks will result in more new
candidate particles and larger searching space. It can increase
the average iteration when arriving in the global best position.
The average iteration of ADPSOGA is more than PSOGA in
the same condition. It means that ADPSOGA has more pop-
ulation diversity than PSOGA. This is mainly due to that
ADPSOGA adopted adaptive adjustment for the inertia weight
and linear strategy for two acceleration coefficients. These
operations result in better searching capacity and more pop-
ulation diversities. In addition, the PSOGA average iteration
is more than WPSO obviously in the same condition. This is
chiefly because WPSO adopted continuous encoding strategy
to solve a discrete problem, which may fall into the premature
convergence and only obtain a locally optimal solution.

Fig. 8 shows the completion rate of five medium size
real-world workflows with four different scheduling algo-
rithms (i.e., MCPCPP, ADPSOGA, WPSO and PSOGA)
across fluctuant multiple clouds. Note that the ‘completion’
means that a workflow is completed based on a schedul-
ing algorithm within its deadline. With a fast view on the



GUO et al.: COST-DRIVEN SCHEDULING FOR DEADLINE-BASED WORKFLOW ACROSS MULTIPLE CLOUDS 1581

Fig. 8. The completion rate of five medium workflows with four different scheduling algorithms across multiple clouds.

five subgraphs of Fig. 8, the completion rate of three algo-
rithms (i.e., ADPSOGA, WPSO and PSOGA) will increase
with the weakening of deadline constraint. When the dead-
line constraint is loose (e.g., D5(G)), the completion rate
of these algorithms almost reach 100%. However, the com-
pletion rate of MCPCPP is obviously less than other three
PSO-based algorithms and irrelevant to the deadline markedly.
There is no completed case with MCPCPP algorithm in the
tests for Montage, Epigenomics or LIGO workflow. Montage,
Epigenomics and LIGO have more big tasks, which occupy
more VM running time, compared with other two workflows.
MCPCPP schedules PCP including more big tasks within its
sub-deadline, which can cause more volatility in fluctuant
environment.

The completion rate of Montage workflow is represented
as Fig. 8(a), from which we know that the performance
of ADPSOGA and PSOGA is better than WPSO. The
Rate of WPSO is less than 30% in D1(G) phase and
close to 80% in D3(G) phase. It reaches 100% in both
D4(G) and D5(G) phases. Fig. 8(b) is the completion
rate of CyberShake workflow. WPSO performs better than
MCPCPP, and ADPSOGA has the worst performance in
D1(G) phase. With the increase of deadline, the performance
of ADPSOGA is slightly better than WPSO and obviously
exceeds other two algorithms. The Rate of ADPSOGA,
WPSO and PSOGA all reach 100% in D5(G) phase for the
CyberShake workflow, but MCPCPP is only close to 10%.
Fig. 8(c) shows the completion rate of Epigenomics workflow.
The Rate of ADPSOGA, WPSO and PSOGA all exceed 85%
in D1(G) phase, and the performance of these three algorithm

is similar. The completion rate of LIGO workflow is illustrated
in Fig. 8(d), from which we realize that the performance of
ADPSOGA is better than other two PSO-based algorithms in
both D1(G) and D2(G) phases. Fig. 8(e) shows the comple-
tion rate of SIPHT workflow. ADPSOGA is the best than any
other algorithms in D1(G) phase, and PSOGA is the best in
D2(G) phase. In addition, the Rate of three PSO-based algo-
rithms reach 100%, and MCPCPP has a better performance
with 70% completion rate.

Overall, MCPCPP has the worst performance in fluctu-
ant environment. ADPSOGA has a better completion rate in
most cases, especially with the tight deadline constraint (e.g.,
D1(G)). This is because ADPSOGA considers the impact of
VM boot time.

Fig. 9 shows the makespan of five medium size real-world
workflows with four different scheduling algorithms. Three
dotted lines on each subgraph correspond to three deadline
constraints (i.e., D1(G), D3(G) and D5(G)). The ordinate,
measured in second (sec), represents the workflow makespan.
Each workflow has different magnitudes of makespan. The
Montage and CyberShake have low makespan magnitudes,
and Epigenomics has the highest makespan magnitude. On
the whole, MCPCPP has the smallest jump interval compared
with other three algorithms. The jump interval is defined as
the distance between the Q4 (upper edge) and Q0 (lower edge)
of a boxplot. ADPSOGA almost has the largest jump interval
except in D1(G) phase in Fig. 9(c) and Fig. 9(e). The larger
jump interval means greater searching capacity in the problem
space. In addition, the performance of ADPSOGA is almost
better than any other algorithms except in D1(G) phase in



1582 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

Fig. 9. The makespan boxplot of five medium workflows with three deadline constraints (i.e., D1(G), D3(G) and D5(G)).

Fig. 9(b), where the Q1 (first quartile) and Q2 (median) are
higher than the deadline reference line. This means that the
completion rate is less than 25%.

The lower edge of MCPCPP boxplot is beyond the deadline
reference line for the Montage in Fig. 9(a), Epigenomics in
Fig. 9(c) and LIGO in Fig. 9(d). This means that the workflow
makespan in all test cases exceed their corresponding dead-
line constraints. The Q2 of MCPCPP is beyond the deadline
reference line in D3(G) and D5(G) phases in Fig. 9(a), which
implies that more than one half test cases exceed the dead-
line constraints. In Fig. 9(b), the Q2 of MCPCPP is a little
more than its deadline reference line in D3(G) phase, which
signifies that its completion rate is less than 50%. Moreover,
the reference line is between the Q2 and Q3 (third quartile) of
ADPSOGA, which means that its completion rate is between
50% and 75%. In this stage, three PSO-based algorithms (i.e.,
ADPSOGA, WPSO and PSOGA) have similar performance
for the workflow makespan, but ADPSOGA has a larger jump
interval than the other two algorithms. In D1(G) phase of
Fig. 9(d), the Q2 of ADPSOGA strategies to the reference line,
and its completion rate is close to 50%. Also, the reference line
is between Q1 and Q2 of WPSO, and the completion rate of
WPSO is between 25% and 50%. In this stage, ADPSOGA has
the best performance in terms of makespan and jump interval.
In D3(G) phase of Fig. 9(e), the WPSO boxplot has the longest
distance to the reference line compared with other three algo-
rithms. The Q1 of ADPSOGA is similar with WPSO, but the
Q4 of ADPSOGA is higher than WPSO. This phenomenon
implies that ADPSOGA has larger jump interval than WPSO.

Fig. 10 shows the average makespan and average cost of
five medium size real-world workflows with three deadline

constraints. The reference line on each subgraph represents
the corresponding deadline constraint. Both makespan and cost
are displayed on the same figure, whose goal is to find a cost-
efficient schedule algorithm.

For the Montage workflow, the average NWC of MCPCPP is
the lowest compared with the other three algorithms. However,
the makespan of MCPCPP exceeds its corresponding deadline
in any case. This implies that MCPCPP is not a cost-efficient
algorithm. In D1(G) phase, ADPSOGA and WPSO can sat-
isfy their deadline constraints, and ADPSOGA has a lower
NWC compared with WPSO. In D3(G) and D5(G) phases,
ADPSOGA, WPSO and PSOGA can all meet their deadline
constraints, and ADPSOGA has the lowest NWC in D5(G)
phase. In addition, the average NWC of Montage workflow
is very large, which is about 20 times more expensive than
SIPHT. This is mainly because the diverse structures of dif-
ferent workflows. We can find that Montage has many tasks
in its second level. These tasks all occupy about 15 seconds
with the fastest VM type in our experiments. When the dead-
line is tight, the scheduling algorithm has to launch more
fast VMs to ensure the second level tasks could finish within
their sub-deadlines. MCPCPP generates a large makespan,
which is mainly due to ignoring the VM performance
variation.

For the CyberShake workflow, the average makespan of four
scheduling algorithms all surpass their corresponding deadline
reference lines in D1(G) phase. There is no way to assess
which algorithm is better, because all the algorithms cannot
satisfy their deadline constraints. In D3(G) phase, the situation
is roughly similar to Montage. MCPCPP exceeds its reference
line, and other three algorithms almost finish the workflow



GUO et al.: COST-DRIVEN SCHEDULING FOR DEADLINE-BASED WORKFLOW ACROSS MULTIPLE CLOUDS 1583

Fig. 10. The average makespan and average cost of five medium workflows with three deadline constraints (� represents NWC, ♦ represents makespan).

within their deadlines. The average NWC of ADPSOGA is
the lowest in both D3(G) and D5(G) phases.

For the Epigenomics workflow, the average NWC of
MCPCPP is always the lowest compared with other three algo-
rithms in any phase. However, its average makespan is obvi-
ously far more than the deadline reference line. ADPSOGA is
a cost-efficient algorithm for Epigenomics in any phase. It not
only has a lower average NWC but also meets the deadline
constraint. The performance of ADPSOGA for the other two
workflows (i.e., LIGO and SIPHT) is similar to its expression
in Epigenomics.

In conclusion, MCPCPP in general has a lower NWC, but it
dissatisfies its deadline constraint. Although WPSO can always
meet its defined deadline, the average NWC is less-than-ideal.
In all test cases, ADPSOGA on the whole is a cost-efficient
algorithm across fluctuant multiple clouds. We do not dis-
cuss the general results for the small and tiny size workflows,
because the results are similar to the medium size workflows.

Regarding the time complexity of ADPSOGA, all particles
are updated and their fitness is calculated in each iteration.
The number of calculations required to update the state of
particles is determined by the particle number N and particle
dimension D. The number of tasks T and the number of initial
resources R determine the fitness function complexity based
on the Algorithm I. Based on the fact that D = 3T in our
scheduling strategy, ADPSOGA has an overall time complex-
ity of order O(4N ∗ T 2 ∗ R) per iteration. In addition, the
convergence time is influenced by the number of tasks and
the number of initial resources.

The overall framework of WPSO and PSOGA is the same
as ADPSOGA. Therefore, WPSO and PSOGA both have an
overall time complexity of order O(4N ∗T 2∗R) per iteration.

For MCPCPP, we assume that the maximum number of
dependency arcs E ∼ O(T 2). Therefore, the time com-
plexity of parameter initialization and complexity reduction
becomes O(T +E ) ∼ O(T 2). Then the Schedule_all_Parents
procedure [27] schedules each task only once, and updates
the parameters of its predecessors and successors. The time
complexity of scheduling all tasks is O(R*T). In addition,
each task has at most T–1 predecessors and successors, so
its time complexity equals O(T 2). Consequently, the overall
time complexity of MCPCPP is O(R ∗ T + T 2).

VI. CONCLUSION

This study proposed an ADPSOGA strategy for schedul-
ing a deadline-constrained scientific workflow across multiple
clouds. Firstly, the strategy considered more factors such
as data transfer cost, the startup/shutdown lags of virtual
machines. Secondly, in order to avoid premature conver-
gence of traditional PSO, it introduced the random two-
point crossover operator and one-point mutation operator of
GA. This operator could effectively improve the diversity
of the population during the evolution. Finally, we designed
a cost-driven strategy for the deadline-constrained workflow.
It considered both the data transmission cost and the comput-
ing cost. Experimental results showed that ADPSOGA strat-
egy had better adaptability and effectiveness across fluctuant
multiple clouds.

Our strategy took more time to find the optimal solution
than any other competitive algorithms. It was not suitable for
dealing with the workflows that have many tasks occupying
very little part of charged unit time. In the future, we will
accurately determine the initial resource pool based on the



1584 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 4, DECEMBER 2018

structure of workflow. It has an important influence on the
scheduling efficiency and results. Another future work is to
improve our algorithm to address more types of workflows
and workflow ensemble across multiple clouds. Besides, we
will further discuss the impact of a specific fluctuant factor on
our scheduling strategy.

REFERENCES

[1] L. Liu, M. Zhang, R. Buyya, and Q. Fan, “Deadline-constrained coevo-
lutionary genetic algorithm for scientific workflow scheduling in cloud
computing,” Concurrency Comput. Pract. Exp., vol. 29, no. 5, pp. 1–12,
2017.

[2] F. Marozzo, D. Talia, and P. Trunfio, “A workflow management system
for scalable data mining on clouds,” IEEE Trans. Services Comput.,
vol. 11, no. 3, pp. 480–492, May/Jun. 2018.

[3] N. Xiong et al., “A distributed efficient flow control scheme for multirate
multicast networks,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 9,
pp. 1254–1266, Sep. 2010.

[4] B. Lin, W. Guo, and X. Lin, “Online optimization scheduling for scien-
tific workflows with deadline constraint on hybrid clouds,” Concurrency
Comput. Pract. Exp., vol. 28, no. 11, pp. 3079–3095, 2016.

[5] M. A. Rodriguez and R. Buyya, “Deadline based resource provi-
sioningand scheduling algorithm for scientific workflows on clouds,”
IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 222–235, Apr./Jun. 2014.

[6] H. Cao, H. Jin, X. Wu, S. Wu, and X. She, “DAGMap: Efficient and
dependable scheduling of DAG workflow job in Grid,” J. Supercomput.,
vol. 51, no. 2, pp. 201–223, 2010.

[7] W.-N. Chen and J. Zhang, “An ant colony optimization approach to
a grid workflow scheduling problem with various QoS requirements,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 39, no. 1, pp. 29–43,
Jan. 2009.

[8] H. Khajemohammadi, A. Fanian, and T. A. Gulliver, “Fast workflow
scheduling for grid computing based on a multi-objective genetic algo-
rithm,” in Proc. IEEE Pac. Rim Conf. Commun. Comput. Signal Process.
(PACRIM), 2013, pp. 96–101.

[9] J. Jofre et al., “Federation of the BonFIRE multi-cloud infrastruc-
ture with networking facilities,” Comput. Netw., vol. 61, pp. 184–196,
Mar. 2014.

[10] J. Yin, X. Lu, C. Pu, Z. Wu, and H. Chen, “JTangCSB: A cloud ser-
vice bus for cloud and enterprise application integration,” IEEE Internet
Comput., vol. 19, no. 1, pp. 35–43, Jan./Feb. 2015.

[11] V. Varadharajan, and U. Tupakula, “Security as a service model for
cloud environment,” IEEE Trans. Netw. Service Manag., vol. 11, no. 1,
pp. 60–75, Mar. 2014.

[12] S. Bilgaiyan, S. Sagnika, and M. Das, “Workflow scheduling in cloud
computing environment using cat swarm optimization,” Int. J. Comput.
Appl., vol, 89, no. 2, pp. 11–18, 2018.

[13] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environment,” in Proc. IEEE Int. Conf. Adv. Inform.
Netw. Appl., 2010, pp. 400–407.

[14] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost optimized pro-
visioning of elastic resources for application workflows,” Future Gener.
Comput. Syst., vol. 27, no. 8, pp. 1011–1026, 2011.

[15] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in
the cloud: Observing, analyzing, and reducing variance,” in Proc. VLDB
Endowment, vol. 3, nos. 1–2, pp. 460–471, 2010.

[16] J. Yu and R. Buyya, “A budget constrained scheduling of workflow appli-
cations on utility grids using genetic algorithms,” in Proc. Workflows
Support Large Scale Sci. Workshop (WORKS), 2006, pp. 1–10.

[17] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Cost-driven
scheduling of grid workflows using partial critical paths,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 8, pp. 1400–1414, Aug. 2012.

[18] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Proc. Int. Conf. High
Perform. Comput. Netw. Stor. Anal., 2011, pp. 1–12.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. 6th
IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[20] T. Sousa, A. Silva, and A. Neves, “Particle swarm based data mining
algorithms for classification tasks,” Parallel Comput., vol. 30, nos. 5–6,
pp. 767–783, 2004.

[21] J. Zhu, X. Li, R. Ruiz, and X. Xu, “Scheduling stochastic multi-stage
jobs to elastic hybrid cloud resources,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 6, pp. 1401–1415, Jun. 2018.

[22] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and
deadline-constrained provisioning for scientific workflow ensembles in
IaaS clouds,” in Proc. Int. Conf. High Perform. Comput. Netw. Stor.
Anal., 2012, pp. 1–11.

[23] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle swarm
optimization for cloud workflow scheduling,” in Proc. IEEE Int. Conf.
Comput. Intell. Security, 2010, pp. 184–188.

[24] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky computing,”
IEEE Internet Comput., vol. 13, no. 5, pp. 43–51, Sep./Oct. 2009.

[25] H. M. Fard, R. Prodan, and T. Fahringer, “A truthful dynamic workflow
scheduling mechanism for commercial multicloud environment,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1203–1212, Jun. 2013.

[26] Y. Zhang, “Resource scheduling and delay analysis for workflow in
wireless small cloud,” IEEE Trans. Mobile Comput., vol. 17, no. 3,
pp. 675–687, Mar. 2018.

[27] B. Lin et al., “A pretreatment workflow scheduling approach for big
data applications in multicloud environment,” IEEE Trans. Netw. Service
Manag., vol. 13, no. 3, pp. 581–594, Sep. 2016.

[28] G. Juveet al., “Characterizing and profiling scientific workflows,” Future
Gener. Comput. Syst., vol. 29, no. 3, pp. 682–692, 2013.

[29] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. Da Fonseca,
“Scheduling in hybrid clouds,” IEEE Commun. Mag., vol. 50, no. 9,
pp. 42–47, Sep. 2012.

[30] S. S. Woo and J. Mirkovic, “Optimal application allocation on multiple
public clouds,” Comput. Netw., vol. 68, pp. 138–148, Aug. 2014.

[31] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu, “Achieving efficient cloud
search services: Multi-keyword ranked search over encrypted cloud data
supporting parallel computing,” IEICE Trans. Commun., vol. 98, no. 1,
pp. 190–200, 2015.

[32] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, and
I. M. Llorente, “Scheduling strategies for optimal service deployment
across multiple clouds,” Future Gener. Comput. Syst., vol. 29, no. 6,
pp. 1431–1441, 2013.

[33] W. Guo, J. Li, G. Chen, Y. Niu, and C. Chen, “A PSO-optimized real-
time fault-tolerant task allocation algorithm in wireless sensor networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3236–3249,
Dec. 2015.

[34] S. Jeyalatha and B. Vijayakumar, “Design and implementation of a Web
structure mining algorithm using breadth first search strategy for aca-
demic search application,” in Proc. Int. Conf. Internet Technol. Secured
Trans. (ICITST), 2011, pp. 648–654.

[35] Z. Yu, J. Zhou, W. Guo, L. Guo, and Z. Yu, “Participant selection for
t-sweep k-coverage crowd sensing tasks,” World Wide Web J., vol. 21,
no. 3, pp. 741–758, 2018.

[36] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Int. Conf. Evol. Comput. Proc. World Congr. Comput. Intell., 1998,
pp. 69–73.

[37] S. Bharathi et al., “Characterization of scientific workflows,” in
Proc. Workflows Support Large Scale Sci. Workshop (WORKS), 2008,
pp. 1–10.

[38] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure as a ser-
vice clouds,” Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158–169,
2013.

[39] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274,
Mar. 2002.

Wenzhong Guo received the B.S. and M.S. degrees
in computer science and the Ph.D. degree in com-
munication and information system from Fuzhou
University, Fuzhou, China, in 2000, 2003, and 2010,
respectively, where he is currently a Full Professor
with the College of Mathematics and Computer
Science. His research interests include cloud com-
puting, mobile computing, and evolutionary compu-
tation. He currently leads the Network Computing
and Intelligent Information Processing Laboratory,
which is a Key Laboratory of Fujian Province,
China.



GUO et al.: COST-DRIVEN SCHEDULING FOR DEADLINE-BASED WORKFLOW ACROSS MULTIPLE CLOUDS 1585

Bing Lin received the B.S. and M.S. degrees in com-
puter science and the Ph.D. degree in communica-
tion and information system from Fuzhou University,
Fuzhou, China, in 2010, 2013, and 2016, respec-
tively. He is currently an Assistant Professor with
the College of Physics and Energy, Fujian Normal
University. His research interest mainly includes
parallel and distributed computing, computational
intelligence, and data center resource management.

Guolong Chen received the B.S. and M.S.
degrees in computational mathematics from Fuzhou
University, Fuzhou, China, in 1987 and 1992,
respectively, and the Ph.D. degree in computer
science from Xi’an Jiaotong University, Xi’an,
China, in 2002. He is a Full Professor with the
College of Mathematics and Computer Science,
Fuzhou University. His research interests include
cloud computing, computation intelligence, com-
puter networks, and information security.

Yuzhong Chen received the B.S. and Ph.D. degrees
in communication and information system from the
University of Science and Technology of China,
in 2000 and 2005, respectively. He is currently an
Associate Professor with the College of Mathematics
and Computer Science, Fuzhou University. His cur-
rent research interests include computational intel-
ligence, data mining, cloud computing, and social
computing. He is also the Vice Chief of the Fujian
Provincial Key Laboratory of Network Computing
and Intelligent Information Processing.

Feng Liang received the bachelor’s degree in soft-
ware engineering from Nanjing University in 2012.
He is currently pursuing the Ph.D. degree with
the Department of Computer Science, University of
Hong Kong. His research interest mainly includes
distributed file systems, distributed computing, and
data center resource management. He is currently
undertaking the research work on improving the
network performance of the shuffle phase in YARN.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


