
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Confluence: Speeding Up
Iterative Distributed Operations by

Key-dependency-aware Partitioning
Feng Liang, Member, IEEE , Francis C. M. Lau, Senior Member, IEEE , Heming Cui, Member, IEEE ,

and Cho-Li Wang, Member, IEEE

Abstract—A typical shuffle operation randomly partitions data on many computers, generating possibly a significant amount of
network traffic which often dominates a job’s completion time. This traffic is particularly pronounced in iterative distributed operations
where each iteration invokes a shuffle operation. We observe that data of different iterations are related according to the transformation
logic of distributed operations. If data generated by the current iteration are partitioned to the computers where they will be processed
in the next iteration, unnecessary shuffle network traffic between the two iterations can be prevented.
We model general iterative distributed operations as the transform-and-shuffle primitive and define a powerful notion named
Confluence key dependency to precisely capture the data relations in the primitive. We further find that by binding key partitions
between different iterations based on the Confluence key dependency, the shuffle network traffic can always be reduced by a
predictable percentage. We implemented the Confluence system. Confluence provides a simple interface for programmers to express
the Confluence key dependency, based on which Confluence automatically generates efficient key partitioning schemes. Evaluation
results on diverse real-life applications show that Confluence greatly reduces the shuffle network traffic, resulting in as much as 23%
job completion time reduction.

Index Terms—Spark; Shuffle; Key Dependency; Iterative Distributed Operation; Partitioning

F

1 INTRODUCTION

Distributed applications consisting of iterative dis-
tributed operations are pervasive in fields such as graph
computing [1], [3], database query processing [4], [5], [6] and
machine learning [7], [8]. To process big data, distributed
frameworks like Hadoop [12]and Dryad [10] are often used.
Several distributed paradigms have been developed on top
of these frameworks, which offer various styles of dis-
tributed processing for large-scale data [4], [5], [18]. Most
distributed paradigms include the shuffle operation, which
transfers intermediate output data between computer nodes
for next-stage processing.

The shuffle operation may invoke a large amount of
network traffic, and often may even dominate the job’s com-
pletion time, especially for shuffle-heavy jobs. The problem
of heavy shuffle network traffic could greatly impact the
performance of distributed operations. A study based on a
Yahoo! work trace has revealed as much as 70% of jobs are
shuffle-heavy [14]. Although some work claimed that the
network part of a shuffle may unlikely be a bottleneck [2],
other studies showed that the shuffle completion time can
account for as much as 33% of the overall completion
time [15], [16].

The heavy shuffle traffic problem is especially pro-
nounced in iterative distributed operations, where shuffle
operations transfer large volumes of data between every
two iterations [18]. In the pervasive hashed-by-key (i.e.,

• F. Liang, F.C.M. Lau, H. Cui and C.-L. Wang are with Department of
Computer Science, The University of Hong Kong.
E-mail: F. Liang- loengf@connect.hku.hk, F.C.M. Lau- fcmlau@cs.hku.hk,
H. Cui- heming@cs.hku.hk, C.-L. Wang- clwang@cs.hku.hk

random) partitioning scheme, the shuffle size of each map-
and-reduce iteration would be almost as large as the map
output data [12], leading to excessive shuffle network traffic
and deferred job completion time.

Our key intuition is that we can exploit the relation
of data between iterations and partition the data in such
a way that they would be assigned to locations where
they will be processed in latter iterations. Keys of data
have relevance over different iterations and how data are
partitioned between iterations can greatly affect the network
traffic in shuffle operations. If we have a key partitioning
scheme such that data needed by the following computing
iterations have been partitioned to the same node(s) before
shuffling, we can reduce or even eliminate the network
traffic of shuffle operations (of which the amount of data
being shuffled is referred to as the “shuffle size” in the rest
of this paper).

For instance, the map-and-reduce-style [12] matrix mul-
tiplication algorithm is a two-iteration (stage) operation
whose shuffle size can be minimized with a “better” key
partitioning scheme. Each entry of the matrix product
C = AB, where A ∈ Rm×k and B ∈ Rk×n, is de-
noted as Cij =

∑k
p=1 AipBpj . Stage 1 calculates AipBpj ,

p = 1, 2, . . . , k. Stage 2 obtains Cij by summing AipBpj ,
p = 1, 2, . . . , k. Fig. 1 shows an example of 2 × 2 matrix
multiplication in a four-node cluster. The data entries are
in the key-value format, where the keys are (i, j, p) or (i, j).
By using the default hashed key partitioning scheme in both
shuffle iterations (Fig. 1(b)), the data entries representing the
addends for a particular sum need to be transferred to the
same node in the second shuffle iteration. For example, to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

get (1, 1) → 19, entry (1, 1) → 14 in Node 2 needs to be
transferred to Node 1 to join entry (1, 1)→ 5. However, we
know that for any particular i and j and different p’s, all
entries with keys (i, j, p) will be transformed to entries with
key (i, j) in the second iteration (Fig. 1(c)). A better scheme
should have partitioned all entries with key (i, j, p) with a
different p to the same node in the first iteration, so that
no entry needs to be transferred across nodes in the second
shuffle iteration. For example, by assigning (1, 1, 1)→ 5 and
(1, 1, 2) → 14 to the same node (Node 1) in the first shuffle
iteration, the result entry (1, 1)→ 19 can be obtained locally
in Node 1 in the second iteration without cross-node data
transfer.

In the above example, obviously, there is a relation
between data with key (i, j, p) in the first iteration and data
with key (i, j) in the second iteration. Knowing this relation,
partitioning data entries to decrease/minimize the shuffle
operation becomes possible.

We define the notion of Confluence key dependency to
describe this key relation. The Confluence key dependency
depicts the logic of distributed application, by specifying
how an input dataset is transformed to an output dataset.
The Confluence key dependency is simple in form and easy
to define in iterative distributed operations. We further find
that by using the technique of key partition binding based
on the Confluence key dependency, the shuffle size always
decreases by a predictable percentage, and sometimes can be
even eliminated. Compared to other partition optimization
approaches [27], [28] which support specific types of data
exchange patterns, the Confluence key dependency is more
general and can be used in arbitrary types of distributed
operations.

To exploit the Confluence key dependency in iterative
distributed operations, we present the Confluence Key Par-
titioning (CKP) scheme. Based on a set of key dependencies,
CKP binds key partitions in different iterations and reduces
the shuffle size to the maximum extent. Most distributed
computing paradigms, such as Spark [18] and Twister [19],
provide an interface for adding a user-defined partitioner
for shuffle operations. We implement CKP in Spark and
programmers can apply CKP to various kinds of distributed
applications by adding just a single line of code in the
program. We illustrate by analysis and experiments with
real-life applications, showing that by applying the CKP
scheme, the shuffle size of multiple computing iterations
reduces significantly by a predictable percentage, e.g., 100%
shuffle size reduction in an iteration of the MovieLensALS
algorithm; as a result, CKP can reduce the completion time
of a single iteration and the overall job completion time by
as much as 57% and 23%, respectively.

To the best of our knowledge, this is the first proposal
to represent the logic of iterative distributed operations by
key dependency, and the first attempt to reduce the shuffle
size by a predictable percentage by considering the key
dependency across multiple iterations in a key partitioning
scheme. The technical highlights of Confluence are listed as
follows.

• Precise: We propose the simple yet powerful notion
of Confluence key dependency to precisely capture
the logic of data transformation in iterative dis-

A: (1,1) -> 1 A: (1,2) -> 2 A: (2,2) -> 4A: (2,1) -> 3
B: (1,1) -> 5 B: (1,2) -> 6 B: (2,1) -> 7 B: (2,2) -> 8

A: (1,1,1) -> 1
A: (1,2,1) -> 1
B: (1,1,1) -> 5
B: (2,1,1) -> 5

A: (1,1,2) -> 2
A: (1,2,2) -> 2
B: (1,2,1) -> 6
B: (2,2,1) -> 6

A: (2,1,1) -> 3
A: (2,2,1) -> 3
B: (1,1,2) -> 7
B: (2,1,2) -> 7

A: (2,1,2) -> 4
A: (2,2,2) -> 4
B: (1,2,2) -> 8
B: (2,2,2) -> 8

(1,1,1) -> 5
(2,1,2) -> 28

(1,1,2) -> 14
(2,2,1) -> 18

(1,2,1) -> 6
(2,1,1) -> 15

(1,2,2) -> 16
(2,2,2) -> 32

(1,1) -> 5
(2,1) -> 28

(1,1) -> 14
(2,2) -> 18

(1,2) -> 6
(2,1) -> 15

(1,2) -> 16
(2,2) -> 32

(1,1) -> 19 (1,2) -> 22 (2,1) -> 43 (2,2) -> 50

Map 1

Map 2

Node1 Node2 Node3 Node4

Shuffle & Reduce 1 (# Data Entries Transferred: 8)

Shuffle & Reduce 2 (# Data Entries Transferred: 5)

(1,1,1) -> 5
(2,1,2) -> 28(1,1,2) -> 14

(2,2,1) -> 18(1,2,1) -> 6 (2,1,1) -> 15
(1,2,2) -> 16 (2,2,2) -> 32

(1,1) -> 5
(2,1) -> 28(1,1) -> 14

(2,2) -> 18(1,2) -> 6 (2,1) -> 15
(1,2) -> 16 (2,2) -> 32

(1,1) -> 19 (1,2) -> 22 (2,1) -> 43 (2,2) -> 50

Map 2

Shuffle & Reduce 1 (# Data Entries Transferred: 8)

Shuffle & Reduce 2 (# Data Entries Transferred: 0)

✓
1 2
3 4

◆
⇥
✓

5 6
7 8

◆

(a) Matrix A × B

(b) Hashed (Random) Key Partitioning Scheme

(c) A “Better” Key Partitioning Scheme

Fig. 1. An Example of the MapReduce-style Matrix Multiplication Algo-
rithm with Different Key Partitioning Schemes

tributed operations. We define the transform-and-
shuffle primitive that can generally describe all it-
erative distributed operations.

• Efficient: We present the Confluence Key Partition-
ing (CKP) scheme which can greatly reduce the
shuffle size in iterative distributed operations. CKP
is efficient and would not introduce extra workload
skewness.

• General: We show that CKP is easily applicable to
diverse real-life distributed applications. We provide
a simple interface in distributed paradigms, which
allows programmers to apply CKP with one single
line of code.

The rest of the paper is organized as follows. In Section 2,
we describe the model of iterative distributed operations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

and iterative shuffle size, define Confluence key depen-
dency, and analyze the shuffle size of the random key par-
titioning scheme based on the Confluence key dependency.
We present CKP in Section 3. Section 4 introduces the appli-
cation of CKP and its limitations, and Section 5 discusses
implementation details of CKP in distributed paradigms.
Evaluation results of CKP are presented in Section 6. We
discuss the related work in Section 7 and conclude the paper
and suggest some possible future work in Section 8.

2 MODEL AND DEFINITION

2.1 Iterative Distributed Operations
Datasets of large volumes cannot be stored in a single com-
puter node and are often separated into several partitions,
where each partition is distributed to a node in a computer
cluster. We refer to a dataset which is separately stored in
several nodes as a distributed dataset. A function whose
input includes a distributed dataset is called a distributed
operation. Each entry of the distributed dataset can be
represented as a key-value pair.

For iterative distributed operations, we refer to the gen-
eral iterative transform-and-shuffle operations. In each iter-
ation of the iterative distributed operation, the “transform”
primitive performs one or more transformation operations
on the input datasets in each local node. The “shuffle”
primitive would re-partition the datasets by transferring
data entries with the same keys to a designated location
and grouping entries of the same key to a key-value pair,
forming the input for the next iteration. Each iteration of a
distributed operation is in the form of a series of transfor-
mations plus at most one shuffle operation.

Note that the division of distributed operations by
transform-and-shuffle is similar to the paradigm of MapRe-
duce [12], which divides the operation into two primitives:
map and reduce. There are slight differences, but in the con-
text of iterative distributed operations, they can be treated as
equivalent. The shuffle primitive is equivalent to the shuffle
operation of the reduce primitive in MapReduce. It does not
involve any transformation on data. While the transform
primitive is equivalent to the reduce operation (excluding
the shuffle operation) in the reduce primitive plus the map
primitive of the next iteration of a MapReduce operation.
The shuffle primitive is also called the shuffle operation, and
the transform primitive is called the transform operation or,
simply, transformation.

Most iterative distributed paradigms such as the in-
memory Spark [18] and the distributed database query
engine Hive [4] can be equated to iterative transform-and-
shuffle operations. The matrix multiplication example in
Section 1 follows the traditional MapReduce interpretation.
From now on in this paper, we use the transform-and-
shuffle interpretation when we describe iterative distributed
operations.

2.2 Iterative Shuffle Size
We model the overall shuffle size of iterative distributed
operations and discuss the time complexity of obtaining the
optimal key partitioning scheme that minimizes the overall
shuffle size. Table 1 lists some symbols we use in this paper
for easy reference.

TABLE 1
Symbol Reference

Symbol Description
Ai Input dataset for iteration i
A′i Transformation Output in iteration i
Dk Set of input entries of the transform operation

(in the specified iteration) that have key k
D′k Outputs of the transform operation with Dk as the input

For iterative distributed operations, the result of the ith
iteration can be obtained recursively by:

A′i = Ti(Ai)

Ai+1 = Si(A
′
i)

, where Ai is the output of iteration i − 1 as well as the
input of iteration i, Ti is the transform operation of iteration
i that operates on Ai locally without changing the partition
locality, and Si is the shuffle operation of iteration i that
takes the output A′i of the transform operation as the input.
Ai and A′i define not only key-value pairs of datasets, but
also their partition locality. The keys of A′i and Ai+1 are
the same, but their partition localities are different. In the
first iteration, when i equals 1, A1 represents the raw input
datasets before any processing.

Suppose in the shuffle operation of iteration i, in order
to shuffle transformation outputs of an entry a ∈ Ai to its
partition location, the shuffle size is a function of a and
Ai+1: gi(a,Ai+1). The returned value of function gi can be
different in different key partitioning schemes for Ai+1. The
shuffle size of iteration i is:

Gi =
∑
a∈Ai

gi(a,Ai+1).

If m iterations are required to compute the final result,
the overall accumulated shuffle size for obtaining the final
result is

G =

m∑
i=1

Gi =

m∑
i=1

∑
a∈Ai

gi(a,Ai+1). (1)

If contents (including key-value pairs and the partition
locality) of Ai(i = 1, 2, . . . ,m) are already known, to find
out the optimal key partitioning scheme that minimizes the
overall shuffle size G, we need to exhaustively explore the
possible key partition of all the key-value pairs in Ai+1

across all the iterations. By calculating the overall shuffle
size of each scheme, the optimal solution is the scheme with
the minimal size. The time complexity of the exhaustive
method is O(n

∑m+1
i=1 |Ai|), where n is the number of nodes

in the cluster and |Ai| is the number of data entries of Ai,
which indicates that it is a complex problem.

In fact, we usually do not know the contents of Ai

and cannot explore the data partition for the next iteration
until the program has actually finished the ith iteration.
Considering this limitation and the time complexity, the
idea of finding out the optimal partition schemes for all the
iterations in order to minimize the overall data transfer size
G is infeasible.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

2.3 Confluence Key Dependency
We define the Confluence key dependency (or for conve-
nience, key dependency) for representing transformation
logic in every iteration of a distributed operation. Given a
key-value pair as the input to an iteration of a distributed
operation, the transform operation will generate a (or a set
of) new key-value pair(s) based on its logic.

Formally, for a set of input key-value pairs and output
key-value pairs in an iteration of a distributed operation, we
define their key dependency as

k ⇒pr f(k) (2)

, where k is a key, f is a mapping function of k, and f(k) is
another key. For now, we do not care about what f is like,
and consider f(k) as an arbitrary key. The symbol “⇒pr”
indicates the fact that for any data entry whose key is k,
after the transform primitive, the probability that the key of
an output data entry is f(k) is pr. By definition, we have:

k0 ⇒pr f(k0) ≡∀〈k, v〉 ∈ {〈k, v〉|k = k0} :

p(kt(〈k,v〉) = f(k)) = pr

, where t(〈k, v〉) is the transform operation on 〈k, v〉 and
outputs a set of key-value pairs, kd is one of the keys in
dataset d, and p is the probability function.

In the key dependency, we call k the input key, f(k) the
mapped key, and pr the dependency probability. This key
dependency can be read and understood as “input key k has
chance pr to map to mapped key f(k)” after transformation
in the corresponding iteration.

A programmer is supposed to be well acquainted with
the logic of the transform operation t. By saying that we
know the key dependency for a specific iterative distributed
operation, we mean we are able to calculate pr by the
probability function p for specific k and f(k). In the ma-
trix multiplication example, we can easily deduce the key
dependency of the second iteration: ∀i, j, p ∈ domain :
(i, j, p) ⇒1 (i, j). Specifically, the key mapping function is
f((i, j, p)) = (i, j).

2.4 Random Key Partitioning
We will show that the random key partitioning scheme
(RKP) generates no smaller shuffle size than almost any
other key partitioning schemes. In RKP, a key is assigned
a random partition location in the shuffle operation. RKP is
widely used in popular distributed paradigms. For example,
Spark [18] uses the hash-based key partitioning scheme,
which partitions keys based on their hash values.

As mentioned in in Section 2.2, the shuffle size
gi(a,Ai+1) to shuffle transformation outputs of entry a
is different in different key partitioning schemes. Given
a key dependency implicated by a distributed operation,
we discuss how to calculate gi(a,Ai+1) in a specific key
partitioning scheme. We set off from RKP.

In a cluster of n nodes, using RKP, the probability of a
transformed key-value pair being assigned and partitioned
to another node (which indicates a network transfer) is (n−
1)/n.

In iteration i, let Dk denote all transform operation
inputs that have key k, D′k denote transform operation
outputs after transforming Dk, and |D| and |D′| denote the

volume of dataset D and D′ respectively. Given a set of key
dependencies k ⇒prj kj ,

∑
j prj = 1, the expected shuffle

size to transfer D′k in RKP is:∑
a∈Dk

gi(a,Ai+1) =
∑
j

n− 1

n
prj |D′k| =

n− 1

n
|D′k|

≈ |D′k|.
(3)

In cases that n is big in a large cluster, the approximately-
equal sign in Formula 3 can be thought of as an equal sign.
Note that the key dependency does not affect the shuffle
size of an iteration in RKP at all. For any key partitioning
scheme, the shuffle size cannot be larger than the volume
of the shuffle operation. That is,

∑
a∈Dk

gi(a,Ai+1) ≤ |D′k|
for any key partitioning scheme. By summing up the shuffle
sizes for all keys in all iterations by Formula 1, we can easily
conclude that the overall shuffle size of RKP is no less than
almost any other key partitioning scheme.

3 CONFLUENCE

Although it is hard to find the optimal partition solution
to minimize the overall shuffle size, we discover that if the
transformation logic of a specific distributed operation is
already known, the shuffle size can be reduced to the largest
possible extent by exploring the key dependency of different
iterations.

The key dependency is to represent the logic of trans-
form operations, while the key partitioning scheme is to
indicate the logic of shuffle operations. By the observation
that the RKP shuffle size can be deduced from the key
dependency, we have the intuition that we can use the key
dependency to discover other key partitioning schemes that
would result in a smaller shuffle size.

In this section, we present the Confluence key partition-
ing scheme that makes use of the key dependency to reduce
the shuffle size by binding key partition locations. We also
analyze that the Confluence Key Partitioning scheme does
not increase the workload skewness.

3.1 Key Partition Binding

We will show that binding partitions of input keys to
mapped keys based on the key dependency reduces the
shuffle size. Assume that we have a set of key dependencies
k ⇒prj kj ,

∑
j prj = 1 in an arbitrary iteration i. Now

suppose that a key partitioning scheme X has always par-
titioned shuffle output data that have key k in the previous
iteration i − 1 to the same computer node where shuffle
output data that have key kx in this iteration i will be
partitioned. We say that key partitioning scheme X binds
the partition of input key k to mapped key kx in this
iteration i.

By the definition of the key dependency and recalling
that the shuffle size only refers to cross-node data traffic, we
can easily deduce the following theorem.

Binding Theorem. Suppose a key dependency k ⇒pr f(k) in
an iteration of a distributed operation, if the partition of key k was
bound to f(k) in this iteration, the shuffle size for transferring
transformation output data that have key f(k) after transforming
Dk is zero in this iteration.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Algorithm 1: Enhanced Key Partitioning Scheme X

1 In a specific iteration i, foreach key k do
/* K is a key dependency set */

2 K = {k ⇒prj fj(k)|j = 1, 2, . . . ,
∑

j prj ≤ 1} ;
3 Find J such that ∀j, prj ≤ prJ ;
4 Bind input key k to mapped key fJ(k);
5 end

The insight from the binding theorem is that if we know
the key dependency for a dataset in an specific iteration,
we can prepare the partition of the dataset in the previous
iteration by the notion of binding keys so that the dataset
will do local shuffling in this iteration and it will incur no
cross-node traffic.

In such a scheme X, reusing the symbols in Section 2.4,
by the binding theorem, the expected shuffle size to transfer
transformation outputs of the Dk is:

∑
a∈Dk

gi(a,Ai+1) =
n−1
n (1 − prx)|D′k|. The shuffle size reduction of scheme X

compared to scheme RKP is ∆ ≈ prx|D′k|. The value of |D′k|
is a constant for a given transform operation and input Dk.
The larger prx is, the greater scheme X reduces the shuffle
size than RKP does.

There are two constraints when binding key partitions.
First, key partition binding can often be used in all but the
first iteration of a distributed operation. The reason is that
most distributed frameworks do not support specifying the
partition locations of input data loaded from a file system,
which means binding key partitions in the first iteration is
not feasible. But it could be used in the following iterations.

The second constraint is that for a single copy of a
dataset, any input key can be bound to at most one mapped
key, because a key should have a unique partition. This
constraint indicates for all key dependencies with the same
input key, only one can be selected for key partition binding
in an iteration. These two constraints are considered as com-
mon sense when we design new key partitioning schemes.

3.2 Confluence Key Partitioning

Surprisingly, by the binding theorem, we find that binding
key dependency always reduces shuffle size as compared to
RKP. Note that by binding key partitions, the shuffle size
reduction is linearly proportional to the dependency prob-
ability. We can further enhance scheme X by applying key
binding based on the key dependency with the maximum
dependency probability for each key in an specific iteration
(Algorithm 1).

A problem exists in the enhanced scheme X. The key
dependency is usually provided by the programmer. In just
one iteration, the programmer needs to find a distinguished
key dependency set for every input key. The key depen-
dency sets of different input keys can be different. The time
complexity of finding the key dependency in an iteration is
the size of a key dependency set (usually small and can be
considered as a constant) times the number of keys (usually
large), or roughly, O(# of keys), which is usually large.

We presents the efficient Confluence Key Partitioning
(CKP) scheme that reduces or even eliminates the shuffle
size in each iteration with as little as O(1) time complexity.

Algorithm 2: Confluence Key Partitioning

1 foreach iteration i do
/* Programmers decide that */

2 b = Should iteration i apply key partition binding?
3 if b = True then

/* K is a key dependency set */
4 Find ∀k,K =

{k ⇒prj fj(k)|j = 1, 2, . . . ,
∑

j prj ≤ 1} ;
5 Find J such that ∀j, prj ≤ prJ ;
6 ∀k, bind input key k to mapped key fJ(k);
7 end
8 end

The procedure of applying CKP is shown in Algorithm 2. In
an iteration, instead of finding a distinguished key depen-
dency set for every input key, CKP finds one general key
dependency set that is applicable to any input key.

For example, in the second iteration of matrix multipli-
cation, instead of finding key dependency (1, 0, 0)⇒1 (1, 0)
for input key (1, 0, 0) and (1, 0, 1) ⇒1 (1, 0) for input
key (1, 0, 1), respectively, we can define (1, 0, p) ⇒1 (1, 0)
for any p in general. Or more generally, we can define
(i, j, p)⇒1 (i, j) generally for any i, j, p.

A feature of CKP is that it allows a programmer to decide
for a specific iteration whether key partition binding should
be applied or not. In some iterations, it may happen that
the programmer fails to find the key dependency, or the
maximum dependency probability of the key dependency
set is very small, and thus applying CKP would not help
much.In these cases, the programmer may decide not to
bind key partitions. Further discussion about these cases
will be presented in Section 4.5. When a key dependency
with a large dependency probability exists in an iteration,
key partition binding can be applied to reduce shuffle size.

A question about the CKP algorithm is how would
the programmer figure out the key dependency set in an
iteration. The key dependency is derived from the trans-
form operation logic. In some cases, for input key-value
entries with a specific key, the transform operation always
generates output entries with predictable keys, regardless
of what the actual values are. The matrix multiplication
algorithm falls in this case. Finding key dependency in such
cases is usually simple, and a programmer may start from
the domain of the input keys and derive the general key
dependency for each range of the domain. In some other
cases, keys of the output entries are also affected by the
values of the input key-value entries. In these cases, the
programmer needs also consider the key-value entries as
a whole to deduce the mapped keys and the probability to
generate an output entry with each mapped key. We will
discuss more about finding the key dependency with real-
life examples in Section 4.

There is an implicit assumption in the CKP algorithm.
For iterations that do not apply key partition binding, the
input keys are randomly partitioned, just as in RKP.

CKP reduces the shuffle size in all iterations that apply
key partition binding. The shuffle size reduction in each
binding iteration compared to RKP is ∆ ≈

∑
k prJ |D′k|

(recall the shuffle size reduction by key partition binding

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

in Section 3.1). For other iterations that do not apply key
partition binding, the CKP shuffle size is the same as that of
RKP. All in all, CKP reduces the shuffle size by a percentage
of prJ in each iteration that applies key partition binding.
When prJ equals 1 in an iteration, the shuffle size is 0 in that
iteration.

3.3 Workload Skewness Analysis
CKP does not increase the workload skewness in most
applications. The workload of a node is the number of input
entries for the transform operation in that node and the
workload skewness of an iteration is the standard deviation
of the workloads of different nodes in that iteration.

We compare workload skewness of CKP and RKP in
iterations that apply key partition binding. In unbound
iterations, the key partitioning policy of CKP is the same as
that of RKP, and the workload skewness in these iterations is
the same in both schemes. Suppose in one of such iterations,
keys of input entries follow a distribution Dist. In RKP,
these input keys have been uniformly partitioned, and the
workload skewness is the standard deviation of Dist times
the average number of distinguished input keys in each
node.

In CKP, in a binding iteration, suppose two conditions
are met: 1) input keys are uniformly bound to mapped keys;
2) the mapped keys, which are also the input keys of the next
iteration, will be uniformly partitioned in the shuffle oper-
ation. The first condition means that the expected number
of distinguished input keys bound to every mapped key is
the same. If both conditions are satisfied, it indicates that
the input keys have also been uniformly partitioned in the
previous iteration, and therefore, the workload skewness
is the same as that of RKP. The second condition will be
eventually satisfied, as the last iteration always randomly
partitions the keys. If the first condition is always true in all
iterations, the second condition can be proved to be always
true by induction from the last iteration back to the previous
iterations.

In a nutshell, if input keys are uniformly bound to
mapped keys in all iterations, the workload skewness of
CKP is the same as that of RKP. Luckily, this condition is
true in most applications we observe. For example, in the
second iteration of matrix multiplication, the number of
input keys (i, j, p) that are bound to mapped key (i, j) is
equal to the dimension size of the matrix. In the MovieLen-
sALS algorithm introduced later in Section 4, the expected
number of input keys (userId, itemId) that are bound to
mapped key userId is equal to the average number of
items all users have bought. In a few cases (e.g., KMeans
in Section 4) where this condition does not hold, we find
that the workload skewness difference of CKP and RKP is
so small that it could be ignored.

3.4 Inaccurate Key Dependency
Note that programmers do not need to change the original
logic of applications in order to apply CKP. Applying any
key partition scheme, including CKP, will not affect the
logic correctness of the applications, but only affect the
traffic performance of shuffle (shuffle size and workload
skewness).

TABLE 2
CKP Shuffle Size Reduction in Different Distributed Operations

Distributed Operations CKP Shuffle Size Reduction
MatrixMultiplication n3forRn×n

MovieLensALS # of (user, item) entries
GoogleAlbum # of album entries and user entries

PageRank volume of link lists of all URL’s
in every join iteration

MultiAdjacentList 1/2 the RKP shuffle size in every iteration
KMeans |A| ·

∑m
i=j+1 pij

1

upper bound: (m− j)|A|
lower bound: 0

1 |A| is the volume of points, m is the number of iterations.

An inaccurate key dependency means a key dependency
with an inaccurate dependency probability. A dependency
probability of a key dependency implies how much CKP
reduces the shuffle size as compared to RKP. When an in-
accurate key dependency is applied in CKP, the shuffle size
reduction is related to the actual dependency probability,
not to the inaccurate one. At all events, the shuffle size of
CKP is no greater than that of RKP.

As to the workload skewness, the inaccurate key de-
pendency may lead to a different key partition binding,
and unpredictable workload skewness may exist. But as
CKP randomly partitions mapped keys in every iteration
whose next iteration does not apply key partition binding,
the workload skewness readjusts to the same as RKP then.

4 APPLICATION

In this section, we show how CKP is applied in various
iterative distributed applications, by capitalizing on the key
dependency with a large dependency probability in some
iterations. We also discuss limitations of CKP when in some
situation it is not applicable, and solutions to handle these
limitations.

We find that many applications have key dependency
with a large dependency probability in some iteration(s). For
example, in the second iteration of the matrix multiplication
algorithm, the transform operation does a many-to-one pro-
cessing and the key dependency is obvious, ∀ key (i, j, p),
(i, j, p) ⇒1 (i, j), which has 100% dependency probability
for all key dependencies. In some applications, the depen-
dency probability is not 100% but is still large enough to
apply CKP. We illustrate the techniques of finding the key
dependency of iterative distributed operations with real-
life application examples from different fields. A summary
of the CKP shuffle size improvements to the distributed
applications discussed below is shown in Table 2.

4.1 MovieLensALS
MovieLensALS [22] is a recommendation application that
uses the Alternating Least Squares (ALS) method in col-
laborative filtering in order to recommend product items
to users based on user-item rating information. During the
execution, it organizes the rating data into user-item blocks
grouped by key “(userId, itemId)”. In the successive iter-
ations, it needs to reorganize the user-item block data by
generating user blocks and item blocks grouped by key
“userId” and key “itemId”, respectively. This operation is
done in two iterations as shown in Fig. 2(a).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

(userId, itemId)

userId

itemId

iter 1

iter 2

iter 3

iter ...

(1)

(2)

(d) MultiAdjacentList

list

(list,tail)

(list,tail,tail)

(head,list)

(head,list,tail) (head,list,tail) (head,head,list)

Key dependency:
(1) list =>pr (list, tail)
(2) list =>pr (head, list)

iter 1

iter2

iter 3

(1)

(1)

(2)

(2) (2)(1)

iter ...

list

(list,tail)

(list,tail,tail)

(head,list)

(head,list,tail) (head,list,tail) (head,head,list)

Key dependency:
(1) (list, tail) =>0.5 list
(2) (head, list) =>0.5 list

iter 1

(1)

(1)

(2)

(2) (2)(1)

iter ...

iter 3

iter 2

(2)

(2)

(2)(1)

(1)

(1)

(e) MultiAdjacentList Inversed

(b) GoogleAlbum

(f) Kmeans

uid
iter 1

iter 2

other iterations

(uid,aid)

uid

(uid,(uid,aid)

(1) (2)
inner join

point

centroid1(point)

iter 0

iter 1

centroid1(point)
centroid2(point)
centroid3(point)

...

centroid2(point)

centroid3(point)

(3)iter 2

iter 3 iter ...

(1)

(2)

(c) PageRank

(a) MovieLensALS

⟨url,links⟩

iter 1

iter 2

iter ...

⟨url,rank⟩

⟨url,rank⟩

(1) join

⟨url,rank⟩

(1)

join iter 3

(1)

(1)

Fig. 2. The Transformation Lineage of Keys between Iterations and the Key Dependency of Different Applications. Key Partition Binding is Applied
to Keys in Iterations Wrapped in Dashed Rhombus Boxes

Key dependencies from input key (userId, ItemId) ex-
ist in iteration 2 and iteration 3, respectively. As these
two iterations use the same copy of input dataset, by the
second constraint of key partition binding, we can apply
key partition binding in either iteration, but not in both.
If we select key dependency (userId, itemId) ⇒1 userId
in iteration 2, the shuffle size generating the user block in
iteration 2 is 0, and the shuffle size generating the item block
in iteration 3 is the same as that of RKP.

4.2 GoogleAlbum and PageRank

CKP can usually be applied to join operations in dis-
tributed databases. For example, in the Google album
application [26], an entry in table Users is identified by
primary key “uid” and an entry in table Albums by
“(uid, aid)” (Fig. 2(b)). When an inner join operation in-
terleaves these two tables and gets albums for each user,
the transform operation processes interleaved data with
key “(uid, (uid, aid))” to album data with key uid. The
key dependency here is (uid, (uid, aid)) ⇒1 uid. In CKP,
when binding the interleaved key (uid, (uid, aid)) to key
uid, it means both binding key uid in table Users to key
uid (which is a trivial binding) and binding key (uid, aid)
in table Albums to key uid.

We can also interpret this binding as putting album
entries of the same user together in the same node before
such an “inner join” operation. Spanner [26] uses a similar
notion of hierarchical schema to maintain data locality in a
distributed database. The hierarchical schema specifies data
locations once when persisting data in storage, while CKP
specifies data locations iteratively during the computing
procedure of a distributed operation.

Similarly in the famous PageRank algorithm, the link
list of a URL is represented as 〈url, links〉, and the rank
of a URL is 〈url, rank〉, where url is the key for both
datasets. These two datasets are joined to entries in form

of 〈url, (links, rank)〉 in multiple iterations (Fig. 2(c)). The
key dependency is url ⇒1 url for both datasets. Note that
the link list dataset is loaded from a distributed file system
initially and it has not been partitioned by its key url.
Without CKP, entries with key url0 in the link list dataset
need to be transfered to the partition of key url0 in every
join iteration. In CKP, by binding partition of input key url
to mapped key url, the link list dataset is partitioned by
its key url first. Therefore, the link list and the rank with
the same URL are in the same node in every iteration, and
no shuffle network traffic incurs in these join operations.
This partition optimization is also suggested in the usage
of RDD [18]; we formalize it here via the concept of key
dependency.

4.3 MultiAdjacentList

MultiAdjacentList [23] is a graph computing application
which generates lists of different lengths in a graph by con-
catenating adjacent nodes to the head and the tail of a list,
recursively. In every iteration, for a data entry 〈Li, value〉,
key Li represents a list of length i and the value is a set
of adjacent nodes to the head or the tail of the list. The
transform operation generates a group of new lists of length
i + 1 by appending head nodes and tail nodes to each list.
Each new list acts as the new key, and its new head nodes
and tail nodes as the new value. The iterative transformation
of keys in MultiAdjacentList is shown in Fig. 2(d).

For any input key Li in iteration i, key dependencies are
Li ⇒prj (headj , Li) and Li ⇒prl (Li, taill) for many diffe-
rent j’s and l’s, because a list Li may have many adjacent
head or tail nodes. Therefore, values of prj1 and prj2 can
be small and benefits of applying CKP based on these key
dependencies is little. But if we inverse the direction of the
key flow as in Fig. 2(e), we have new key dependencies with
dependency probability of 0.5. The key dependencies of the
inversed key flow reflects the fact that an entry with key

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

(Li, tail) is 50% generated from entries with key Li (and
another 50% from entries with key (Li−1, tail) , where Li−1
is a sublist of Li cutting off the head node).

4.4 KMeans
KMeans [24] is a famous clustering algorithm in data min-
ing. It groups vector points into k clusters where each vector
point belongs to the cluster with the minimum mean value.
This procedure is done in a dedicated number of iterations.
With the initial k chosen points regarded as centroids of
the clusters, in each iteration, every point is compared with
the k centroids and is grouped into a cluster where the
Euclidean distance between the point and the centroid is
the smallest. After all points are grouped, each new cluster
centroid is chosen in the next iteration by the mean of the
points in that cluster. To calculate the mean of each cluster
whose points are located in different nodes, the shuffle
operation takes place to partition points of the same cluster
to one node. A point is always transfromed to an entry with
its cluster centroid as the key in every iteration.

Key dependency exists in each cluster iteration of the
KMeans algorithm (Fig. 2(f)). In CKP, we choose a specific
iteration j, and bind key partitions of the points based
on the key dependency point ⇒1 centroidj(point). As all
iterations use the same copy of the point dataset, the binding
can be interpreted as: if a point is partitioned to a cluster in
an iteration j, we bind its partition to this cluster afterwards,
regardless of which cluster it will be actually grouped into
in the following iterations.

We can predicate the shuffle size after applying CKP.
Suppose in iteration i, i > j, prij is the probability that any
point is grouped into the same cluster as it was grouped
into in a previous iteration j. CKP reduces the shuffle size
by a percentage of prij in each iteration i, i > j. The value
of prij is affected by the input dataset, initial centroids of
the clusters, and the value of j, i.e., from the j-th iteration,
partitions of points are bound to their clusters. For example,
the cluster a point is grouped into tends to be stabler in latter
iteration. With a higher value of j, the value of prij(i > j)
tends to be higher. But accordingly, the number of iterations
that apply key partition binding is smaller. Programmers
may need to tune the value of j and make a trade-off then.
In our evaluation in Section 6, we choose j to 1.

4.5 Limitations Applying Confluence
CKP can be widely applied to reduce the shuffle size of
iterative distributed paradigms that compute and store in-
termediate transformation outputs in local storages (includ-
ing disk and memory), like Spark and Twister. However,
we find CKP to be not applicable or directly applicable in
the following circumstances; we suggest solutions for these
limitations.

First, CKP is not usually applicable for single-iteration
distributed operations. CKP requires that each key of a
transformation input dataset has a partition location. But in
single-iteration distributed operations, input datasets usu-
ally come from a distributed file system (e.g., HDFS [13]),
where data locations are not organized by their key parti-
tions. An alternative solution is to modify the mechanism
of distributed file systems on choosing the partitions of data

blocks when storing data to a file. If a data entry is able
to declare the preferred location as its key partition, and if
the distributed file system writes the entry to its preferred
location, the key partitions of the dataset sustain and CKP
can be applicable.

Second, CKP is not applicable when intermediate trans-
formation data change their partition location in iterative
distributed operations. CKP assumes that data would sus-
tain their partition location during transformation, which
should be a local processing of data in each node without
cross-node data traffic. This assumption is violated when
performing iterative distributed operations in distributed
paradigms that relocate data during transformation. For
example, if we use MapReduce [12] to implement a iterative
distributed operation, output data of the reduce phase are
stored into HDFS, where the data may be transfered to
other nodes for persistence due to its internal mechanism.
A solution to this problem to use iterative distributed
paradigms, such as Twister [19] and Haloop [17], that retain
intermediate transformation data in local nodes.

The third circumstance is that programmers fail to define
the key dependency or the maximum dependency prob-
ability of the key dependency set is trivially small in all
iterations. The reason of the former case is either that the
programmers do not have enough information on the logic
and input data of the distributed application to deduce the
key dependency, or that the key dependency is not clear
by the nature of the distributed application. A solution
to the former case relies on programmers to discover key
dependencies with large dependency probability, usually in
transform operations that reduce the dimensions of key tu-
ples. An example is the mapping from key (userId, itemId)
to (userId) in the MovieLensALS algorithm. The latter case
happens when input keys are diversely mapped to lots of
mapped keys during transformation. All dependency prob-
abilities are usually small, and the shuffle size improvement
of CKP is limited in this case.

Besides, to apply CKP, all a programmer need to man-
ually do is to provide a key dependency by the procedure
in Section 3.2, and the rest is automated by the Confluen-
cePartitioner interface introduced later in Section 5. After
the algorithm of an application is changed, programmers
need to manually update the key dependency being applied
accordingly. Even if the key dependency was outdated,
it only affects the shuffle size reduction, as discussed in
Section 3.4.

5 IMPLEMENTATION

This section introduces implementation details of bundling
partitions with executors to facilitate CKP and automating
CKP in distributed frameworks.

5.1 Tying Partition and Executor in Spark
In the implementation of Spark, a partition is only a logical
location where a task executes the dataset, while the logical
locations of tasks are not tied to the actual (physical) posi-
tions of the executors. In other words, the tasks working on
the same partition are not guaranteed to be assigned to the
same executor (or the same computer node) across different
iterations, where data shuffling is still needed.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

TABLE 3
Key Mapping Functions of ConfluencePartitioner in Different Iterative Distributed Operations

Distributed Operations Key Dependency Key Mapping Function
MatrixMultiplication (i, j, p)⇒1 (i, j) (a:Any) => a match {case (, ,) => (a. 1, a. 2)}

MovieLensALS (userId, itemId)⇒1 userId (a:Any) => a match {case (,) => a. 1}
GoogleAlbum (uid, (uid, aid))⇒1 uid (a:Any) => a match {case (,) => a. 1}

PageRank url⇒1 url (a:Any) => a match {case => a}
MultiAdjacentList (list, tail)⇒0.5 list (a:Any) => a match {case s:String => {s.split(” ”)(0) }}

KMeans point⇒1 centroid1(point) (a:Any) => a match {case => closestPoint(a, centroids1)1

1 centroid1(point) stands for the index of the centroid point that the point is grouped to in the first iteration. closestPoint(a,
centroids1) is the function which returns the cluster of point “a”, that is, the index of the point in “centroids1” that is in
the shortest Euclidean distance with “a”. The “centroids1” are the cluster centroids of the first iteration.

To amend the mismatch of the logical partition and
the actual position of the executor, we implement a new
feature in Spark to allow the tying of the task partitions
and the executors. The tying can be done by hashing. In
the default setting of the task scheduler of Spark, when
an executor becomes free, the task scheduler selects a task
with whichever partition from the head of task queue. The
selected task will run in that executor. Now, if the partition-
executor-tying feature is turned on, when the task scheduler
selects a task for the free executor, it selects one whose task
partition hash code is the same as the hash code of the free
executor. The hash based tying ensures that tasks of the
same partition will always be allocated to the same executor
in different iterations. Finding the first task that hashes
the executor from the task queue, the time complexity of
scheduling each task is O(N), where N is the number of the
executors in a computing iteration.

The partition-executor-tying implementation will not in-
troduce any negative side effects into the system for the
following three reasons: 1) The order to run pending tasks
of the same iteration does not affect the completion time of
each iteration; 2) due to hashing, each executor is expected
to run the same number of tasks in each iteration; 3) the task
scheduling overhead is often trivial and negligible, which is
only linear in the number of executors.

5.2 Confluence Partitioner Interface
We provide an interface in Spark to allow programmers
to apply CKP in a distributed application with as little as
one single line of code. To apply CKP, the user-definable
partitioner offered by pervasive distributed frameworks
allows programmers to implement specific partitioners for
their distributed applications.

We make one step further by implementing a class
named ConfluencePartitioner, which only requires pro-
grammers to provide the key mapping function of the key
dependency selected for key partition binding. Now recall
that in Section 2.3, the key mapping function f is a function
of the input key k and returns the mapped key f(k) in a key
dependency.

In ConfluencePartitioner, to calculate the partition of an
input key-value entry in the shuffle operation, the key map-
ping function is applied to the input key, and the mapped
key is returned. The mapped key is then hashed based on
the number of partitions and the hash value decides the
partition of this input entry. In this way, all input entries
whose mapped key is the same will be partitioned to the
same node.

1 /**** Original MovieLensALS ****/
2 val userPart = new HashPartitioner(16)
3 ratings.mapPartitions{...}
4 .groupByKey(userPart).mapValues{...}
5

6 /**** MovieLensALS applying CKP ****/
7 val userFunc = (a:Any) => {a match {case

(_,_) => a._1}}
8 val userPart = new

ConfluencePartitioner(16, userFunc)
9 ratings.mapPartitions{...}

10 .groupByKey(userPart).mapValues{...}
11

12 /**** Original KMeans ****/
13 while(notConverge && i < maxIter){
14 val closest = points.map(...)
15 centroids = closest.reduceByKey(...)...
16 }
17

18 /**** KMeans applying CKP ****/
19 while(notConverge && i < maxIter){
20 if (i == j){
21 val mapFunc = (a:Any) => {a match { case

_ => closestPoint(a, centroids)}}
22 val part = new ConfluencePartitioner(16,

mapFunc)
23 points = points.reduceByKey(part,

(x,y)=>1).cache()
24 }
25 val closest = points.map(...)
26 centroids = closest.reduceByKey(...)...
27 }

Fig. 3. Code Comparison after Using the ConfluencePartitioner Interface
to Apply CKP in MovieLensALS and KMeans

To apply CKP in a shuffle operation, programmers only
need add a ConfluencePartitioner with a corresponding
mapping function as the partitioner. The code looks like:

data.shuffleOp (new ConfluencePartitioner
(numPartitions, mappingFunction));

, where “data” is often an RDD in Spark and “shuffleOp” is
any shuffle function that repartitions distributed data, such
as reduceByKey or join. Fig. 3 shows the code of using
ConfluencePartitioner to apply CKP in MovieLensALS and
KMeans. Only a single line of code is added in MovieLen-
sALS to apply CKP. Line 7 defines the key mapping function
from key (userId, itemId) to the first element of the tuple:
userId. In KMeans, the key mapping function in Line 21
binds the partition of key a, which is a point, to its cluster
centroid in a specific iteration j.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE 4
Benchmark Settings

Benchmark Input Data Runtime Setting
MatrixMultiplication matrix type: Z1000×1000 Nil

MovieLensALS 21,622,187 ratings from 234,934 users on 29,584 movies 32 user blocks and 32 item blocks
MultiAdjacentList 25,000,000 vertexes with average in/out-degree being 2 4 iterations

KMeans 64,534,480 wikipedia page visit records 32 centers, 10 iterations

Table 3 lists the mapping functions of different dis-
tributed operations mentioned above in the Scala program-
ming language. With ConfluencePartitioner, programmers
can apply CKP without knowing the details of implement-
ing the self-defined partitioner or repeatedly writing diffe-
rent self-defined partitioners in different iterations.

6 EVALUATION

We conduct experiments on a physical testbed to compare
the performance of CKP with the default RKP scheme in
aspects of: the improvement on the shuffle size, the work-
load skewness of executors, the completion time and the
scalability.

6.1 Testbed and Benchmarks
The testbed consists of 18 computer nodes of the Gideon-II
cluster in HKU [25], where each node is equipped with 2
quad-core, 32 GB DDR3 memory and 2 × 300 GB SAS hard
disks running RAID-1. In the setting of the YARN cluster,
one node takes the role of the name node of HDFS and one
other acts as the resource manager of YARN. The remaining
16 nodes are configured as both HDFS data nodes and
YARN node managers, and are connected to an internal non-
blocking switch with GbE ports. Spark is deployed on top
of the YARN cluster with 16 executor, where each executor
runs with 8 GB memories.

Several benchmarks that are representative ones of their
fields are used to evaluate the performance of CKP. Unless
further specified, the input data sizes and the running
setting of the benchmarks are listed in Table 4. CKP is
compared with RKP as the baseline as RKP is the de-
fault and pervasive key partitioning scheme in distributed
frameworks. Other key partitioning scheme are sometimes
used to balance the workload of the executors for specific
applications and datasets. These key partitioning schemes
are for special purpose and we do not compare CKP with
them here.

6.2 Metrics
We measure the shuffle size of each distributed comput-
ing iteration (or alternately, stage) of the benchmarks. The
shuffle size of each iteration is the sum of the cross-node
traffic size of the shuffle operation of all executors in that
iteration. This metric depicts the performance of CKP in
reducing the shuffle size. Besides, the standard deviation
of input workloads of executors is measured as the metric
of workload skewness in binding iterations. The completion
time measure how CKP improves the job completion time
by shuffle size reduction. The scalability of CKP is measured
by the overall shuffle size of all binding iterations, with
different volumes of input data.

(a) Matrix (b) ALS

(c) AdjList (d) KMeans

250

255

260

265

RKP CKP

Si
ze

 (M
B) ×

10
0

Key Partitioning Scheme

Stage1 Stage2

0

400

800

RKP CKP

Si
ze

 (M
B)

Key Partitioning Scheme

Initial UserBlock ItemBlock Remaining

0

100

200

300

400

RKP CKP
Si

ze
 (M

B)
x

10
0

Key Partitioning Scheme

Iter1 Iter2 Iter3 Iter4

350

400

450

500

RKP CKP

Si
ze

 (M
B)

Key Partitioning Scheme

Iter1 Iter2..n

Fig. 4. The Shuffle Size and Standard Deviation of Workloads of Multiple
Iterations (or Stages) in MatrixMultiplication (Matrix), MovieLensALS
(ALS), MultiAdjacentList (AdjList) and KMeans Benchmarks

6.3 Shuffle Size Improvement

Results of the shuffle size and the workload skewness of
each iteration (or stage) after applying CKP and RKP in all
the benchmarks are shown in Fig. 4.

In MatrixMultiplication, CKP totally removes the shuffle
size of stage 2, and the shuffle size of stage 1 remains close
to that of RKP (Fig. 4(a)). Note that, regardless of the key
partitioning scheme, the volume of data in stage 2 is small
compared to stage 1 because data have been locally merged
by the distributed framework to compress data in stage
2 [18].

The benefit of applying CKP on iterative distributed op-
erations that reduce key dimensions can be read in Fig. 4(b).
In MovieLensALS, after applying CKP, the shuffle size for
generating the user block is 0, while the shuffle size for
generating the item block remains almost the same as that
of RKP. As a result, the CKP shuffle size for generating these
two block is half of that of RKP. The other iterations do not
apply key partition binding, and the overall shuffle size that
CKP can reduce for this application is about 11%.

After applying CKP in MultiAdjacentList, the shuffle
size of each iteration is decreased by half beginning from
iteration 2 (Fig. 4(c)). The reason is that by binding partitions
of key (list, tail) to key list, only data with key (head, list)
need to be shuffled in each iteration, which is about 50% of
the total data volume.

In KMeans benchmark, points are bound to centroids
they are grouped into in iteration 1. by partitioning the
points into clusters they belong to in the first iteration,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

0

3000

6000

RKP CKP

Ti
m

e
(s

)
Stage1 Stage2

0

25

50

RKP CKP

Ti
m

e
(s

)

Initial UserBlock ItemBlock Remaining

0

500

1000

RKP CKP

Ti
m

e
(s

)

Iter1 Iter2 Iter3 Iter4

(a) Matrix (b) ALS

(c) AdjList (d) KMeans

0

100

200

RKP CKP

Ti
m

e
(s

)

Iter1 Iter2..n

Fig. 5. Completion Time of Multiple Iterations in Different Benchmarks

CKP decreases the overall shuffle size by 12% (Fig. 4(d)).
This decrease in shuffle size is contributed by avoiding the
repartition of the points that are stable to their clusters,
although not all points are fixed to their clusters in every
iteration. This shuffle size is influenced by the input dataset,
initial centroids of clusters, and from which iteration the
points are bound to the centroids. All these factors affect the
dependency probability in the key dependency.

Note that the shuffle sizes of the other iterations that
do not apply CKP remains almost unchanged, which means
that CKP can reduce the shuffle size in the binding iterations
without introducing extra workloads to the other iterations.
How CKP can reduce the overall shuffle traffic depends on
how large the volumes of data are in the binding iterations,
compared to the overall data volume of all iterations. In
MultiAdjacentList, the CKP can be applied to half of the
iterations, by either appending nodes to the head or to
the tail. While in MovieLensALS, CKP can only be applied
to the iteration that arrange the user-item block, which is
a relatively small portion of the overall application. Still,
it indicates the potential of applying CKP in complicated
iterative distributed applications.

6.4 Workload Skew
The workload skewness is indicated by the standard de-
viation bars in Fig. 4. As expected, the workload skew-
ness (standard deviation of workloads) of the key partition
binding stages of MatrixMultiplication (Fig. 4(a)), Movie-
LensALS (Fig. 4(b)) and MultiAdjacentList (Fig. 4(c)) are all
close to 0. In the KMeans benchmark, the workload skew-
ness of CKP is slightly larger than that in RKP (Fig. 4(d)).
The reason is that the number of points belonging to each
cluster varies, but the number of clusters (32) is not large
enough compared to the computer nodes (16) to balance the
workloads of the nodes. If the number of clusters is larger,
the number of points bound to each cluster is smaller. As
each cluster centroid is randomly partitioned, the workload
skewness tends to be smaller. Still, the standard deviation of
CKP (7 MB) is small compared to the mean shuffle size of
the executors (25 MB).

(a) Matrix (b) ALS

(c) AdjList (d) KMeans

RKP CKP

0

100

200

300

600 700 800 900 1000

Si
ze

 (M
B)

Matrix Length

0

100

200

10 20 30

Si
ze

 (M
B)

of Ratings (Million)

0

10

20

30

5 10 15 20 25

Si
ze

 (G
B)

of Vertexes (Million)

0
100
200
300
400
500

13 26 39 52 65

Si
ze

 (M
B)

of Records (Million)

Fig. 6. Overall Shuffle Size of the Key Partition Binding Iterations in
MatrixMultiplication (Matrix), MovieLensALS (ALS), MultiAdjacentList
(AdjList) and KMeans Benchmarks with Different Input Size

6.5 Completion Time

We evaluate the completion time of each iteration to see how
shuffle size reduction actually improves the performance of
distributed applications. The result of different benchmarks
is shown in Fig. 5. CKP reduces the overall job comple-
tion time by about 23%, 19%, 6% and 23%, respectively.
In key partition binding iterations, the completion time
reduction is even greater. For example, the completion time
reduction of the second iteration in MatrixMultiplicaiton is
about 37% (Fig. 5(a)), and that of the UserBlock iteration
in MovieLensALS is about 57% (Fig. 5(b)). We conclude
that the overall completion time improvement depends on
how large portion the completion time of binding iterations
occupy.

An other observation is that how much the overall com-
pletion time is improved depends on whether the network
performance for shuffling is the bottleneck for an iterative
distributed operation. For example, in MultiAdjacentList,
the shuffle size of every iteration is reduced by 50%, but the
average completion time reduction of all iterations is only
about 6%, resulting in about 6% overall completion time
reduction. The reason is that this algorithm spends more
time generating dozens of new lists from every shorter list,
where CPU is the bottleneck most of the time and network
is unlikely a bottleneck.

6.6 Scalability

The overall shuffle sizes of iterations that apply key parti-
tion binding with different input sizes in different bench-
marks are shown in Fig. 6. In MatrixMultiplication, the
overall shuffle size of RKP increases linearly as the matrix
length grows, while that of CKP is always 0. CKP can totally
remove the shuffle size of stage 2 in MatrixMultiplication.
In the other benchmarks, the shuffle sizes of CKP always
keep in a fixed (or stable) ratio to those of RKP, i.e., 50%
in both MovieLensALS and MultiAdjacentList and around
88% in KMeans. The result shows that CKP scales well with
different volumes of input data. The CKP decreases the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

shuffle size greatly (about 50%) in one iteration out of many
iterations in the MovieLensALS application, and a little
(about 12%) but in every iteration the KMeans application.

7 RELATED WORK

Iterative distributed computing: Some works [17], [18],
[19], [29] improved distributed paradigms for iterative dis-
tributed operations by extending their programming in-
terfaces to support multiple transform and shuffle phases.
The general idea was to cache the data of each iteration in
memory instead of disks to reduce I/O overheads. How-
ever, these works focused on the paradigm and did not
address the issue of heavy network workload during shuffle
operations. Riding on the benefits of fast memory I/O rate
in iterative distributed paradigms, CKP reduces shuffle sizes
and alleviate network workloads by considering the key
dependency in multiple iterations.

Parallel&Distributed algorithms optimization: Lots of
work have been conducted on the optimization of paral-
lel&distributed machine learning algorithms [30] and sci-
ence computing [31], [32], including matrix multiplication
methods [33], [34]. Generally, they focused on optimiz-
ing the algorithm itself by decomposing tasks to increase
task parallelism or removing the synchronization boundary
between I/O-intensive tasks and compute-intensive tasks.
Sarma et al. [35] represented the number of data entries
generated from the map input for a distributed application
with a given parallelism factor as communication cost. To
decrease the communication cost for a specific distributed
application, one needs to redesign the logic of the program
itself in order to operate with a proper parallelism factor.
Their “communication cost” is different from the shuffle size
in this paper, where communication cost is the transfer size
of data between different reduce worker processes (which
can be on the same node), while the shuffle size is traffic
size between different computer nodes. An iterative dis-
tributed application can first be designed with the minimum
communication cost for each iteration, if possible, and then
apply CKP to reduce the shuffle size. ShuffleWatcher [36]
scheduled the locality of map tasks and reduce tasks to
decrease shuffle size for the single iteration of a MapReduce
job, but it did not provide a solution for iterative distributed
operations.

Logic-Aware Shuffle Partitioning: Some similar
works [27], [28] also looked into the logic of programs
and considered the data relation across iterations to
avoid unnecessary shuffle network traffic. But their
approaches either lacked a precise model abstraction so
that their target applications were limited to aggregate-like
operations [28], or they have to be modeled on specific
types of data exchange patterns [27]. The Confluence key
dependency model is simple in form and can be applied to
general iterative distributed operations. The dependency
probability precisely predicts the effect of shuffle size
reduction.

Datacenter networking for shuffle: In datacenters re-
search, various networking scheduling algorithms were
proposed to improve the shuffle throughput for different
performance goals [15], [37], [38], [39]. CKP does not con-
cern itself with the underlying network level. However, by

decreasing shuffle workloads, shuffle operations applying
CKP can work on these shuffle-optimized datacenter net-
works seamlessly and gain larger performance increase.

Skew&Straggler: Distributed computing paradigms like
MapReduce adopted the data locality principle, either to
place computing tasks close to locations of the processing
data in priority to avoid data migration [12], [40], or to
avoid an unbalanced allocation of workloads by consider-
ing compute skew problems [41], [42]. They are concerned
with placing map tasks whose required input data are
self-contained. As the input data of each shuffle task are
distributed across the cluster, such a task-to-data approach
cannot help in shuffle tasks. CKP usually does not introduce
new workloads skewness. Aaron et al. [43] addressed the
problem of stragglers in iterative machine learning. In the
case of successive key partition binding, as CKP randomly
partitions mapped keys in every iteration for which the next
iteration does not apply key partition binding, the workload
skewness always readjusts to a balanced state.

8 CONCLUSION AND FUTURE WORK

We have presented the Confluence Key Partitioning (CKP)
scheme, which based on the key dependency can effectively
reduce the shuffle size of iterative distributed operations.
The key dependency precisely captures the logic of iterative
distributed operations, and CKP then partitions data across
different iterations by using the technique of key partition
binding. CKP greatly reduces the overall shuffle size by a
predictable percentage while not introducing any workload
skewness as a side effect. CKP is applicable to a variety of
distributed applications in fields such as scientific comput-
ing, machine learning, and data analysis.

In the future, we will try to explore methods to automat-
ically discover the key dependency of data among different
iterations. A potential feasible direction is data flow track-
ing. With a set of sample data, we can keep track of how data
are flowing between nodes across different iterations, and
thus find out the key dependency of the sample data. The
challenge is how to expand the key dependency of sample
data to the whole dataset. Unrepresentative sample data
affect the accuracy of the dependency probability. Luckily, as
we have discussed, CKP survives the problem of inaccurate
dependency probability.

ACKNOWLEDGMENTS

This work is supported in part by a Hong Kong RGC CRF
grant (C7036-15G).

REFERENCES

[1] G. Malewicz et al., “Pregel: A system for large-scale graph process-
ing,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, 2010, pp. 135–146.

[2] K. Ousterhout et al., “Making Sense of Performance in Data
Analytics Frameworks,” NSDI, vol. 15, pp. 293-307, 2015.

[3] Y. Lu et al., “Large-scale distributed graph computing systems:
An experimental evaluation,” Proceedings of the VLDB Endowment,
vol. 8, no. 3, pp. 281–292, 2014.

[4] A. Thusoo et al., “Hive: A warehousing solution over a map-
reduce framework,” Proceeding of VLDB Endowment, vol. 2, no. 2,
pp. 1626–1629, 2009.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

[5] Y. Yu et al., “Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language,” in Proceed-
ings of the 8th USENIX Symposium on Operating Systems Design and
Implementation, 2008, pp. 1–14.

[6] M. Armbrust et al., “Spark sql: Relational data processing in
spark,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 2015, pp.
1383–1394.

[7] Y. Low et al., “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” Proceedings of the VLDB
Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[8] T. Kraska et al., “Mlbase: A distributed machine-learning system,”
in Conference on Innovative Data Systems Research (CIDR), vol. 1,
2013, pp. 2–1.

[9] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” in Proceedings of the 4th ACM Annual Symposium on
Cloud Computing, New York, NY, USA, 2013, pp. 5:1–5:16.

[10] M. Isard et al., “Dryad: Distributed data-parallel programs from
sequential building blocks,” in Proceedings of the 2nd ACM SIGOP-
S/EuroSys European Conference on Computer Systems, New York, NY,
USA, 2007, pp. 59–72.

[11] T. White, “Hadoop: The definitive guide”, O’Reilly Media Inc., 2012.
[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing

on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[13] K. Shvachko et al., “The hadoop distributed file system,” in
Proceedings of the IEEE 26th Symposium on Mass Storage Systems
and Technologies, 2010, pp. 1–10.

[14] Y. Chen et al., “The case for evaluating mapreduce performance
using workload suites,” in IEEE 19th International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems, 2011, pp. 390–399.

[15] M. Chowdhury et al., “Managing data transfers in computer
clusters with orchestra,” in Proceedings of the ACM SIGCOMM
Conference, New York, NY, USA, 2011, pp. 98–109.

[16] M. Al-Fares et al., “Hedera: Dynamic flow scheduling for data
center networks.” in Proceedings of the 7th USENIX conference on
Networked Systems Design and Implementation, vol. 10, 2010, pp. 19–
19.

[17] Y. Bu et al., “Haloop: efficient iterative data processing on large
clusters,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
285–296, 2010.

[18] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and Implemen-
tation, 2012, pp. 2–2.

[19] J. Ekanayake et al., “Twister: a runtime for iterative mapreduce,”
in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, 2010, pp. 810–818.

[20] R. Sakellariou and H. Zhao, “A hybrid heuristic for dag scheduling
on heterogeneous systems,” in Proceedings of 18th IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2004, pp. 111–.

[21] H. Zhao and R. Sakellariou, “Scheduling multiple dags onto
heterogeneous systems,” in Proceedings of 20th IEEE International
Parallel and Distributed Processing Symposium, 2006, pp. 14–.

[22] “Movielensals spark submit 2014.” [Online]. Avail-
able: https://databricks-training.s3.amazonaws.com/movie-
recommendation-with-mllib.html

[23] “Multiadjacentlist benchmark.” [Online]. Available:
https://github.com/liangfengsid/MultiAdjacentList

[24] “Spark kmeans benchmark.” [Online]. Available:
http://spark.apache.org/docs/latest/mllib-clustering.html

[25] “Hku gideon-ii cluster.” [Online]. Available:
http://i.cs.hku.hk/%7Eclwang/Gideon-II/

[26] J.C. Corbett et al., “Spanner: Googles globally distributed
database,” Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, pp. 251-264, 2012.

[27] J. Zhou et al., “Incorporating partitioning and parallel plans into
the SCOPE optimizer,” IEEE 26th International Conference on Data
Engineering, pp. 1060-1071, 2010.

[28] J. Zhang et al., “Optimizing Data Shuffling in Data-Parallel
Computation by Understanding User-Defined Functions,” NSDI,
vol. 12, pp. 22-22, 2012.

[29] T. Gunarathne et al., “Scalable parallel computing on clouds using
twister4azure iterative mapreduce,” Future Generation Computer
Systems, vol. 29, no. 4, pp. 1035-1048, 2013.

[30] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up machine
learning: Parallel and distributed approaches. Cambridge University
Press, 2011.

[31] M. Kiran, A. Kumar, and B. Prathap, “Verification and validation
of parallel support vector machine algorithm based on mapreduce
program model on hadoop cluster,” in IEEE International Confer-
ence on Advanced Computing and Communication Systems, 2013, pp.
1–6.

[32] T. Mensink et al., “Metric learning for large scale image classifica-
tion: Generalizing to new classes at near-zero cost,” in Computer
Vision–ECCV 2012. Springer, 2012, pp. 488–501.

[33] A. Buluc and J. R. Gilbert, “Parallel sparse matrix-matrix multi-
plication and indexing: Implementation and experiments,” SIAM
Journal on Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[34] G. Ballard et al., “Communication-optimal parallel algorithm for
strassen’s matrix multiplication,” in Proceedings of the 24th annual
ACM Symposium on Parallelism in Algorithms and Architectures, 2012,
pp. 193–204.

[35] A. D. Sarma et al., “Upper and lower bounds on the cost of a map-
reduce computation,” Proceedings of the VLDB Endowment, vol. 6,
no. 4, pp. 277–288, 2013.

[36] F. Ahmad et al., “Shufflewatcher: Shuffle-aware scheduling in
multi-tenant mapreduce clusters,” in 2014 USENIX Annual Tech-
nical Conference, Philadelphia, PA, Jun. 2014, pp. 1–13.

[37] A. Greenberg et al., “Vl2: a scalable and flexible data center
network,” in Communication of the ACM, vol. 54, no. 3, 2011, pp.
95–104.

[38] L. Popa et al., “Faircloud: sharing the network in cloud comput-
ing,” in Proceedings of the ACM SIGCOMM conference on Applica-
tions, technologies, architectures, and protocols for computer communi-
cation, 2012, pp. 187–198.

[39] A. Shieh et al., “Sharing the data center network,” in Proceedings
of the 8th USENIX Symposium on Networked Systems Design and
Implementation, 2011, pp. 309–322.

[40] M. Zaharia et al., “Improving mapreduce performance in hetero-
geneous environments,” in Proceedings of the 8th USENIX Sympo-
sium on Operating Systems Design and Implementation, 2008, pp. 29–
42.

[41] Y. Kwon et al., “Skew-resistant parallel processing of feature-
extracting scientific user-defined functions,” in Proceedings of the
1st ACM Symposium on Cloud Computing, 2010, pp. 75–86.

[42] Y. Kwon et al., “Skewtune: mitigating skew in mapreduce applica-
tions,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, 2012, pp. 25–36.

[43] A. Harlap et al., “Addressing the straggler problem for iterative
convergent parallel ml,” in Proceedings of the Seventh ACM Sympo-
sium on Cloud Computing, New York, NY, USA, 2016, pp. 98–111.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

Feng Liang received the BS degree in software
engineering from Nanjing University in 2012,
and the PhD degree in computer science from
The University of Hong Kong in 2017. His re-
search interests are mainly on distributed file
systems, distributed computing, machine learn-
ing, and formal methods for distributed sys-
tems. He is recently undertaking the research
project on distributed deep learning. [homepage]
i.cs.hku.hk/%7Efliang

Francis C.M. Lau received his PhD in computer
science from the University of Waterloo in 1986.
He has been a faculty member of the Depart-
ment of Computer Science, The University of
Hong Kong since 1987, where he served as the
department chair from 2000 to 2005. He is now
Associate Dean of Faculty of Engineering, the
University of Hong Kong. He was a honorary
chair professor in the Institute of Theoretical
Computer Science of Tsinghua University from
2007 to 2010. His research interests include

computer systems and networking, algorithms, HCI, and application of
IT to arts. He is the editor-in-chief of the Journal of Interconnection
Networks. [homepage] i.cs.hku.hk/%7Efcmlau

Heming Cui is an assistant professor in Com-
puter Science of HKU. His research interests
are in operating systems, programming lan-
guages, distributed systems, and cloud comput-
ing, with a particular focus on building software
infrastructures and tools to improve reliability
and security of real-world software. [homepage]
i.cs.hku.hk/%7Eheming

Cho-Li Wang is currently a Professor in the De-
partment of Computer Science at The University
of Hong Kong. He graduated with a B.S. de-
gree in Computer Science and Information Engi-
neering from National Taiwan University in 1985
and a Ph.D. degree in Computer Engineering
from University of Southern California in 1995.
Prof. Wangs research is broadly in the areas of
parallel architecture, software systems for Clus-
ter computing, and virtualization techniques for
Cloud computing. His recent research projects

involve the development of parallel software systems for multicore/GPU
computing and multi-kernel operating systems for future manycore pro-
cessor. Prof. Wang has published more than 150 papers in various peer
reviewed journals and conference proceedings. He is/was on the edi-
torial boards of several scholarly journals, including IEEE Transactions
on Cloud Computing (2013-), IEEE Transactions on Computers (2006-
2010). [homepage] i.cs.hku.hk/%7Eclwang

