
BAShuffler: Maximizing Network Bandwidth Utilization in
the Shuffle of YARN

Feng Liang
Department of Computer Science

The University of Hong Kong
loengf@connect.hku.hk

Francis C.M. Lau
Department of Computer Science

The University of Hong Kong
fcmlau@cs.hku.hk

ABSTRACT
YARN is a popular cluster resource management platform.
It does not, however, manage the network bandwidth re-
sources which can significantly affect the execution perfor-
mance of those tasks having large volumes of data to trans-
fer within the cluster. The shuffle phase of MapReduce jobs
features many such tasks. The impact of underutilization of
the network bandwidth in shuffle tasks is more pronounced if
the network bandwidth capacities of the nodes in the cluster
are varied.

We present BAShuffler, a bandwidth-aware shuffle sched-
uler, that can maximize the overall network bandwidth uti-
lization by scheduling the source nodes of the fetch flows at
the application level. BAShuffler can fully utilize the net-
work bandwidth capacity in a max-min fair network. The
experimental results for a variety of realistic benchmarks
show that BAShuffler can substantially improve the clus-
ter’s shuffle throughput and reduce the execution time of
shuffle tasks as compared to the original YARN, especially
in heterogeneous network bandwidth environments.

Keywords
YARN; MapReduce; Shuffle; Network Scheduling

1. INTRODUCTION
YARN (Hadoop Version 2) [13] is a fault-tolerant, highly

reliable and scalable distributed computing platform for big
data processing. YARN exercises a fine-grain control over a
cluster’s resources, including memories and CPU cores but
not the network bandwidths that are available to the cluster
nodes. In reality, many tasks running on YARN may need
to transfer non-trivial amounts of data among themselves,
which happens when executing the shuffle phase of MapRe-
duce [7] and Spark [14]. The performance of these tasks
can be largely affected by the network bandwidths allocated
to them (by some scheduling of the communication flows).
It has been reported that for “shuffle-heavy” jobs, the data
shuffling time can take up to as much as 70% of the overall

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC’16, May 31-June 04, 2016, Kyoto, Japan
c© 2016 ACM. ISBN 978-1-4503-4314-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2907294.2907296

execution time [5]. Optimizing the shuffle performance is
thus of paramount importance for these shuffle-heavy jobs.

In MapReduce, the worker of a reduce task needs to fetch
the map outputs from a set of mappers via a limited num-
ber of TCP flows. The shuffle phase in YARN by default
would try to evenly distribute the load on the network by
randomly selecting the source node (which corresponds to
one or more pending flows) when such a fetch occurs. If
the links connecting all the nodes in the cluster are more
or less equal in terms of bandwidth and if the number of
network connections is large, this random source selection
(RSS) policy could prevent some nodes/links from becom-
ing a bottleneck. Obviously, however, without monitoring
the ongoing connection allocations in the cluster, and based
on which to select a source node to schedule its flows, the
RSS approach cannot offer any bandwidth guarantee to the
selected flows. In the case where the network is heteroge-
neous in terms of its links’ capacities, RSS would very likely
lead to suboptimal performance in scheduling all the flows
in a shuffle.

We propose BAShuffler, a network bandwidth aware shuf-
fle scheduler, that can maximize the network bandwidth uti-
lization during the shuffle phase. BAShuffler operates at the
application level, without changing the underlying network
and the MapReduce interfaces. BAShuffler applies the Par-
tially Greedy Source Selection (PGSS) method to select the
appropriate source nodes that can maximize the network
bandwidth utilization. PGSS estimates the bandwidth uti-
lization via the notion of max-min fairness in TCP communi-
cation. We use examples to illustrate how PGSS works and
can increase the bandwidth utilization in different scenarios,
for both homogeneous and heterogeneous networks. Our ex-
periment results on a physical cluster show that BAShuffler
can significantly increase the shuffle throughput and reduce
the total job completion time by up to 29% for shuffle-heavy
jobs as compared to the original YARN.

2. APPLICATION-LEVEL SCHEDULING

2.1 Application- vs. Network-Level Design
To improve shuffle performance, a solution can be devised

to operate at the network level or the application level. At
the network level, ideas such as performance isolation [8]
and fair sharing of network resources [12] can provide per-
formance guarantees for the shuffle fetch flows. However, as
the flows belonging to one shuffle are correlated in semantics
and the shuffle phase cannot finish until its last flow finishes,
optimization by scheduling the network based on the granule

Application
MasterShuffle Task BAShuffler

Caller
Resource
Manager

BAShuffler

Node
Manager

register bandwidthget/free fetch source

Figure 1: Architecture of BAShuffler

of individual flows may not always lead to improved shuffle
performance.

The “coflow” model [6] was proposed to allow scheduling
the network based on the granule of a collection of application-
level correlated flows. But nevertheless, neither coflow nor
any other pure network-level model can actually possess any
knowledge about the runtime status of the shuffle phase due
to information the gap between the network level and the
application level. The application level can only create a
limited number of fetch flows at a time (5 per reduce task
by default) due to system limits, and the remaining map out-
puts are left pending until there are available fetch workers
later, which is unknown to the network level (or any coflow
there). Minimizing the completion time of a coflow is NOT
the same thing as minimizing the shuffle completion time.

To obtain the optimal scheduling solution that minimizes
the shuffle completion time, the scheduler needs to consider
both the application-level runtime status (all the available
map outputs and their target destinations) and network-
level information (the network fabric, routing, bandwidth
allocation, etc.). However, it is too costly to implement such
a scheduler because it will need to gather/distribute a large
amount of information from/to both the application level
and the network level. The overhead of the cross-layer com-
munication between the application level and the network
level could be prohibitive.

Application-level shuffle scheduling has the advantage that
it can readily obtain the true runtime status of the shuffle.
Although it cannot do anything to improve the operation
of the underlying network, it can observe and predict the
behavior and performance of the network, and then sched-
ule the shuffle flows accordingly based on these observations
and the predicted values (e.g., by using max-min fairness in
the TCP network) to obtain a near-optimal solution.

2.2 Max-Min Fairness in TCP
The max-min fair (MMF) allocation behavior of TCP

communication is the converged state achieved by the AIMD
(Additive Increase, Multiplicative Decrease) congestion con-
trol algorithm used by TCP [9]. The MMF policy of TCP
has been extensively analyzed and verified in the literature
[4]. Although it cannot accurately model the exact behavior
of TCP communication, the MMF model is acceptable and
appropriate for approximating the network behavior, and
can lead to useful conclusions in various application settings.
By the notion of MMF, the current bandwidth allocated to
each TCP flow can be estimated, given the knowledge of the
topology, the capacities of the links and the routing paths
of the flows.

With the recent progress in research on full bisection band-
width topologies [2, 11], it is reasonable to simplify the dat-
acenter fabric as a non-blocking switch [5, 3]. In this case,
the bottleneck links of the flows would then lie in the access
layer which is directly connected to the nodes. When work-

Algorithm 1: Partially Greedy Source Selection

Input : Sources; Pattern: the sources and destinations
the allocated flows in the cluster

Output: Selected
Heaviest ← the heaviest-loaded source nodes in Sources
MaxBandwidth ← 0
foreach Source ∈ Heaviest do

Util ← the MMF bandwidth utilization of the whole
cluster after adding Source to Pattern
if Util > MaxBandwidth then

MaxBandwidth ← Util
Selected ← Source

end

end
add Selected to Pattern
update the load count of Selected

ing out the MMF allocation of the TCP flows, the network
topology and the paths of the data flows can be ignored,
and only the bandwidth capacities of the links in the access
layer and the source and destination nodes of the TCP flows
need to be considered. The non-blocking switch abstraction
largely simplifies the estimation of the MMF bandwidth al-
location. In the rest of the paper, we hold the assumption
that all bottleneck links are in the access layer.

3. BASHUFFLER

3.1 Architecture of BAShuffler
BAShuffler is implemented and embedded in YARN, and

its architecture is shown in Fig. 1. When a shuffle task needs
to schedule a new fetch, it sends a source selection request
to BAShuffler which is housed in the Resource Manager
and makes scheduling decisions using the Partially Greedy
Source Selection (PGSS) algorithm. The PGSS algorithm is
introduced below and the details of the design of BAShuffler
can be found in the extended version [10] of this paper.

3.2 Partially Greedy Source Selection
The algorithm of PGSS is presented in Algorithm 1. PGSS

assigns every node a load count, which indicates how many
fetch flows will be created from this node in the immediate
or near future. When a shuffle begins, PGSS assumes that
there will be a new fetch flow later from every map task.
Therefore, it increments the load count of each potential
pending source node by the number of map tasks in the node.
When PGSS needs to select a source from the pending nodes,
it zeros in on the set of source nodes that have the largest
remaining load counts (“partial”) and selects the one that
gives that maximum MMF bandwidth utilization (“greedy”).

The advantage of selecting the source from the heaviest
loaded nodes is that this incurs a small scheduling overhead.
Suppose that the number of nodes in the cluster is N , the
number of existing flows in the network is F , the number
of pending sources is M(M ≤ N), and the number of the
heaviest-loaded nodes is K(K ≤ M). Given that the time
complexity for obtaining the MMF bandwidth utilization of
the specific network from a communication pattern is O(N+
F), the time complexity of PGSS is O(K × (N + F)) for
scheduling each request, instead of O(M × (N + F)) if all
the pending sources are considered.

A
dl ul

B
dl ul

C
dl ul

a
b

c1
c2

6 6 6 (12) 6 (12)6 6

(a) Uneven Pattern

A
dl ul

B
dl ul

C
dl ul

c1

c2b1

b2a1

a2

d1

d2

6 6 126 6 12

(b) Even Pattern

Figure 2: Scenarios of Selecting the Source in Dif-
ferent Flow Patterns

Table 1: MMF Bandwidth Allocation of Uneven
Flow Pattern in Homogeneous Network

Selected Flow a b c1 c2 Overall
Nil 3 3 - - 6
c1 3 3 3 - 9
c2 3 3 - 6 12

Table 2: MMF Bandwidth Allocation of Uneven
Flow Pattern in Heterogeneous Network

Selected Flow a b c1 c2 Overall
Nil 6 6 - - 12
c1 3 6 3 - 12
c2 6 6 - 6 18

3.3 Applying PGSS
We illustrate how PGSS is applied when selecting a source

based on the notion of MMF allocation in both homoge-
neous and heterogeneous network settings, corresponding to
the capacities of the access layer links being the same or
different, respectively.

Fig. 2 depicts two scenarios of either uneven or even flow
pattern, where even means that the numbers of flows into
or out of all the nodes are the same, and uneven otherwise.
In the homogeneous network setting, the three nodes, A,
B, and C, have the same uplink and downlink bandwidth
capacities, which are 6, 6 and 6, respectively; whereas in
the heterogeneous setting, there capacities are 6, 6 and 12,
respectively. The solid arrows represent the existing fetch
flows and the dashed arrows represent the new flows that
can be selected. Now, a fetcher in Node B becomes available
and PGSS needs to decide a source node (A or C) to fetch
the data. Assume that both Node A and Node C are the
heaviest-loaded nodes.

3.3.1 Homogeneous Network
For the homogeneous network setting, the MMF band-

width allocation of each flow before or after the selection
of a new flow is shown in Table 1, where “Nil” in an entry
means before the source selection. Different selection deci-
sions can lead to different MMF bandwidth allocations and
overall bandwidth utilizations. PGSS will select Node C as
the source, which gives 33% higher overall bandwidth uti-
lization than if Node A is selected. Note that the RSS policy
of YARN will have a 50% probability of selecting the source
node “A”.

3.3.2 Heterogeneous Network
For the heterogeneous network setting, RSS gives rise to

an even poorer bandwidth utilization than in the case of a
homogeneous network, regardless of whether the flows are
evenly allocated across the network or not.

Table 3: MMF Bandwidth Allocation of Even Flow
Pattern in Heterogeneous Network

a1 a2 b1 b2 c1 c2 d1 d2 Overall
Nil 3 3 3 3 3 3 - - 18
d1 3 3 2 2 2 3 2 - 17
d2 3 3 2 2 4 3 - 2 19

For the uneven flow patterns in Fig. 2(a) with the hetero-
geneous network setting, the MMF allocation of each flow
is shown in Table 2 The overall bandwidth utilization dif-
ference between selecting Flow c1 and Flow c2 is amplified
in the heterogeneous network (3:2), when compared to the
homogeneous network (4:3). PGSS will always select the
source (Node C) that brings about the maximum bandwidth
utilization.

In the homogeneous network, if the communication pat-
tern of the flows is exactly even, selecting any source node
for fetching will make no difference in the overall bandwidth
utilization. However, in the heterogeneous network, select-
ing the right source node can lead to a higher bandwidth
utilization.

Fig. 2(b) depicts the scenarios of the even flow pattern,
and the capacities of the links follow the heterogeneous net-
work setting. The MMF allocation of the flows before and
after selecting the new flows (dashed arrows) is shown in
Table 3. Surprisingly but it does happen that the over-
all MMF bandwidth utilization drops if Flow d1 is selected.
PGSS selects Flow d2 to guarantee the maximum bandwidth
utilization.

4. EVALUATION
We run BAShuffler in a physical testbed with the hetero-

geneous network setting. The cluster contains 18 computer
nodes, one of which assumes the role of the name node
of HDFS, and another one acts as the resource manager
of YARN. The remaining 16 nodes are configured as both
the data nodes of HDFS and the node managers of YARN.
All the 18 nodes are connected to an internal non-blocking
switch with GbE ports. To create the heterogeneous network
capacities, among the 16 node managers, the bandwidth ca-
pacities of the uplinks and downlinks of 8 nodes are manually
limited to 160 Mbps, by using the traffic control tool “tc”,
and the remaining 8 nodes keep to their physical uplink and
downlink bandwidth capacity, which is 320 Mbps.

The benchmarks and datasets used are from a realistic
MapReduce benchmark suite [1]. We use mainly the shuffle-
heavy applications because we want to evaluate the perfor-
mance of BAShuffler when the shuffle workload can saturate
the network most of the time.The sizes of the datasets of the
benchmarks are listed in Table 4. Unless specified otherwise,
the number of fetchers in each shuffle task is 5 (the default
value).

4.1 Shuffle Throughput
The metric of the overall shuffle throughput reflects the

cluster’s overall bandwidth utilization along the time axis.
The overall shuffle throughput is depicted as the cumula-
tive completion ratio of the overall shuffle workload. Fig. 3
shows the cumulative completion ratios of RSS and PGSS in
various benchmarks, where PGSS clearly outperforms RSS
in all the benchmarks. The overall shuffle throughput im-
provement is the result of maximizing the overall bandwidth

Table 4: Benchmark Dataset Size (GB)
Benchmark Input Shuffle Output

Terasort 190 190 190
InvertedIndex 200 42 34

SequenceCount 300 180 150
RankedInvertedIndex 150 175 153

0

20

40

60

80

100

0 40 80 120 160

CR
(%
)

Time (10s)

RSS

PGSS

(a) Terasort

0

20

40

60

80

100

0 20 40 60

CR
(%
)

Time (10s)

RSS

PGSS

(b) InvertedIndex

0

20

40

60

80

100

1 41 81 121

CR
(%
)

Time (10s)

RSS

PGSS

(c) SequenceCount

0

20

40

60

80

100

0 20 40 60 80 100

CR
	(%

)

Time	(10s)

RSS

PGSS

(d) RankedInvertedIndex

Figure 3: Cumulative Completion Ratio (CR) of the
Overall Shuffle Workload of RSS and PGSS in Var-
ious Benchmarks along the Time

utilization, e.g., the shuffle throughput speedup due to PGSS
is about 12% in the Terasort benchmark.

4.2 Completion Time
The reduce completion time is the duration from the time

when all the map tasks have finished to the time when
the job finishes. Fig. 4 depicts the reduce completion time
speedup and the job overall completion time speedup by
PGSS as compared to RSS with different numbers of fetch-
ers in each shuffle task. Different numbers of fetchers will
create different degrees of traffic congestion in the network.
As the benchmarks are reduce-heavy, where the shuffle phase
can occupy a major portion of the overall workload, in most
cases, BAShuffler not only improves the reduce phase, but
also the overall completion time of the jobs rather decisively.
For example, in the RankedInvertedIndex benchmark with 5
fetchers, PGSS shortens the reduce completion time by 29%
and the overall completion time by 21%. In some cases,
the speedup of PGSS is not obvious (e.g., Terasort with 6
fetchers in Fig. 4(a)) which is because the reduce completion
time of RSS is already the minimum among all the fetcher
settings.

5. CONCLUSION
In this paper, we describe BAShuffler which we implement

in YARN to improve the shuffle performance. It schedules
the source nodes of the shuffle flows at the application level
in order to maximize the overall max-min fairness bandwidth
utilization. BAShuffler can significantly increase the shuffle
performance especially when the network is heterogeneous
in the capacities of its links.

Acknowledgement This work is supported in part by a
Hong Kong RGC CRF grant (C7036-15G).

0

5

10

15

20

25

2 3 4 5 6

Sp
ee
du
p	
(%
)

Fetchers

Reduce Overall

(a) Terasort

0

10

20

30

2 3 4 5 6

Sp
ee
du
p
(%
)

Fetchers

Reduce Overall

(b) InvertedIndex

0

10

20

30

2 3 4 5 6Sp
ee
du
p	
(%
)

#	Fetchers

Reduce Overall

(c) SequenceCount

0

10

20

30

2 3 4 5 6Sp
ee
du
p
(%
)

Fetchers

Reduce Overall

(d) RankedInvertedIndex

Figure 4: Reduce Completion Time Speedup and
Job Overall Completion time Speedupof PGSS

6. REFERENCES
[1] F. Ahmad, S. Lee, M. Thottethodi, and

T. Vijaykumar. Puma: Purdue mapreduce
benchmarks suite. 2012.

[2] M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus,
R. Pan, N. Yadav, G. Varghese, et al. Conga:
Distributed congestion-aware load balancing for
datacenters. In SIGCOMM, 2014.

[3] M. Alizadeh, S. Yang, M. Sharif, S. Katti,
N. McKeown, B. Prabhakar, and S. Shenker. pfabric:
Minimal near-optimal datacenter transport.
SIGCOMM, 2013.

[4] D.-M. Chiu and R. Jain. Analysis of the increase and
decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN
systems, 17(1):1–14, 1989.

[5] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing data transfers in computer
clusters with orchestra. In SIGCOMM, 2011.

[6] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
coflow scheduling with varys. In SIGCOMM, 2014.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 2008.

[8] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. Vl2: a scalable and flexible data center
network. In SIGCOMM, 2009.

[9] V. Jacobson. Congestion avoidance and control. In
SIGCOMM, 1988.

[10] F. Liang and F. C. M. Lau. Bashuffler: Maximizing
network bandwidth utilization in the shuffle of yarn.
http://i.cs.hku.hk/%7Efliang/paper/BAShuffler.pdf.

[11] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. Portland: a scalable fault-tolerant
layer 2 data center network fabric. In SIGCOMM,
2009.

[12] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and
B. Saha. Sharing the data center network. In NSDI,
2011.

[13] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al. Apache hadoop yarn: Yet
another resource negotiator. In SOCC, 2013.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

