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Abstract—Self-supervised emotion recognition leveraging
skeleton-based data offers a promising approach for classifying
emotional expressions within the extensive amount of unlabeled
data gathered by sensors in the Internet of Things (IoT). Recent
advancements in this field have been driven by contrastive
learning-based or generative learning-based self-supervised meth-
ods, which effectively tackle the issue of sparsely labeled data.
In emotion recognition tasks, the emotional high-level semantics
embedded in the skeleton data are more important than the
subtle joint movements. Compared to existing methods, discrete
label prediction can encourage SSL models to abstract high-level
semantics in a manner similar to human perception. However, it
is challenging to comprehensively capture emotional expressed
in skeleton data solely from joint-based features. Moreover,
emotional information conveyed through body movements may
include redundant details that hinder the understanding of
emotional expression. To overcome these challenges, we propose a
novel discrete-label-based emotion recognition framework named
the Appendage-Informed Redundancy-ignoring (AIR) discrete
label framework. First, we introduce the Appendage-Skeleton
Partitioning (ASP) module, which leverages limb movement data
from the original skeleton to explore emotional expression. Next,
we propose the Appendage-refined Multi-scale Discrete Label
(AMDL) module, which transforms traditional self-supervised
tasks into classification tasks. This design continuously extracts
emotional semantics from skeleton data during pre-training,
functioning similarly to predicting categories and subsequently
classifying samples. To further reduce the nonessential informa-
tion in skeleton data that may negatively impact the generation
of accurate emotional categories, we propose the Appendage
Label Refinement (ALR) module. It refines the generated cat-
egories by using the relationships between the skeleton and
the various appendages obtained via ASP module. Finally, to
maintain consistency across multiple scales, we introduce the
Multi-Granularity Appendage Alignment (MGAA) method. By
incorporating features from both coarse and fine scales, MGAA
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mitigates the encoder’s sensitivity to noise and enhances its
overall robustness. We evaluate our approach on the Emilya,
EGBM, and KDAE datasets, where it consistently outperforms
state-of-the-art methods under various evaluation protocols.

Index Terms—Internet of Things (IoT), Skeleton-based Emo-
tion Analysis, Self-supervised, Affective Computing

I. INTRODUCTION

W ITH the rapid development of the Internet of Things
(IoT), data interactions are occurring constantly [1]–

[3]. To better understand humans’ thoughts and feelings, emo-
tion recognition is crucial for comprehending their behavior
and decision-making processes. Within the IoT ecosystem,
emotion recognition enables the creation of smarter, context-
aware environments where interconnected devices can dy-
namically adapt to users’ emotional states, thereby enhanc-
ing interactions and overall user experiences [4]. Current
emotion recognition methods primarily focus on analyzing
facial expressions [5]–[9], speech [10], [11], text [12], and
physiological signals such as electroencephalography (EEG)
[13]–[15] or electrocardiography (ECGs) [16]. However, facial
expression-based approaches can be unreliable in cases of
mock expressions or misleading self-reports of emotional re-
sponses [17], [18]. Additionally, the resolution of the collected
facial data significantly affects the accuracy of recognition.
Speech- or text-based methods may be less suitable in public
settings or for large-scale crowds [19]. Physiological signal-
based approaches, on the other hand, involve demanding data
acquisition processes that limit their practicality in everyday
IoT applications [20], [21]. These challenges underscore the
necessity for more powerful emotion recognition techniques.

The existing research shows certain differences in people’s
body movements with different emotions [22], [23]. With
the increasing maturity of depth sensors in the IoT environ-
ments [24] and human pose estimation algorithms [25], [26],
the cost of acquiring skeleton data has gradually decreased.
As a result, emotion recognition based on body skeleton
data has garnered increasing attention. Early body skeleton-
based approaches to emotion recognition primarily depended
on handcrafted features [27]–[29]. The above approach relies
heavily on the set feature extraction rules that depend on the
domain luo2025analysis knowledge setting, which limits the
generalization ability of the method [30]. With the rise of deep
learning, the limitations of manual feature extraction methods
have been broken. STEP [31], ProxEmo [32], and TNTC
[33] respectively attempted to automatically extract the high-
level emotional categories information contained in skeleton
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Fig. 1. Three commonly used self-supervised learning frameworks. Among these, (a) is the reconstruction learning method, (b) is the contrastive learning
method, and (c) is the Discrete Label-based method.

data by means of spatiotemporal graph convolution and group
convolution. It is important to note that the aforementioned
methods, as supervised learning approaches, rely heavily on a
substantial amount of labeled body skeleton-based emotional
data. However, the data annotation process is notably labour-
intensive and time-consuming. Moreover, the labeling process
imposes stringent requirements on annotators to prevent topic
deviation, which could lead to incorrect labeling.

To effectively utilize unlabeled emotional data, researchers
have employed self-supervised learning (SSL) methods to
learn diverse emotion representations from these unlabeled
datasets. In recent years, SSL has achieved significant success
using contrastive-based methods [19], [34], as depicted in
Fig. 1(a), and reconstruction-based methods [35], [36], as
shown in Fig.1(c), for skeleton emotion recognition tasks.
However, it is generally believed that these SSL frameworks
primarily ensure the accuracy of low-level features while
neglecting high-level semantic abstractions [37]–[40]. In a
constrained IoT environment, it is critical to improve the
encoder’s ability to extract the high-level emotional-semantic
representation contained in skeleton data. Compared with other
SSL frameworks, SSL method based on discrete labels makes
encoder pay more attention to extracting high-level semantic
information in emotional expression during pre-training [39].

Although discrete label prediction offers these advantages
and has achieved significant success across various domains
[38], [41]–[44], its application in general skeleton-based emo-
tion recognition tasks remains challenging for two reasons.
Firstly, in the dynamic emotional expression process based
on skeleton data, in addition to the micro-level information
(i.e., the changes in the original 24 joints included in the
skeletal structure), the coarse-grained motion variations of
the appendage segments also convey significant emotional
information [45]. To leverage the more comprehensive emo-
tional representations contained within skeleton data for gen-
erating discrete labels, it is essential to consider how to
enable methods to extract micro-level information from the
skeleton while simultaneously capturing the valuable structural

information of the auxiliary limb segments. Secondly, when
humans understand bodily emotional expressions, they do so
by extracting and clustering the macroscopic relationships
between different body parts. For example, when expressing
happiness, individuals involuntarily swing their upper and
lower limbs with varying amplitudes. Even when the same
person’s limb movement habits do not significantly differ
across different environments, identifying these commonalities
can convey unique and recognizable high-level emotion infor-
mation [46]. Humans can classify emotions by capturing the
prominent changes in the upper and lower limb regions while
eliminating redundant details that exhibit minimal variation.
To achieve understanding and generalized discriminative ca-
pabilities comparable to humans, it is essential to consider how
to eliminate redundant information contained in the skeleton
data to obtain more refined discrete labels.

To address the aforementioned challenges, we propose a
novel Appendage-Informed Redundancy-ignoring (AIR) dis-
crete label framework, which refines discrete labels to mitigate
these issues. To capture the additional motion variations con-
tained in skeleton data, we introduce an Appendage-Skeleton
Partitioning (ASP) module. This module segments human
limbs based on nodes in the skeleton data and inputs this
information into the encoder along with fine-grained details
(joint, bone, and motion data from the original skeleton). This
process ensures that the encoder learns comprehensive skeletal
information during pre-training. Additionally, to reduce the re-
dundant details present when extracting and clustering data of
the same emotion, we propose the Appendage-refined Multi-
scale Discrete Label (AMDL) module. Its simple structure is
shown in Fig. 1(b). In this framework, we leverage the original
skeleton data and the coarse-scale appendage information ob-
tained by the ASP module to label the unlabeled data through
clustering. In each iteration, we use the AMDL module to
generate emotion labels for the unlabeled skeleton data and
use them to optimize the SSL model. In this process, we
also propose an Appendage Label Refinement (ALR) Module,
which utilizes the coarse-grained appendage information from
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ASP to amplify features that help distinguish between cate-
gories and reduce the noise caused by highly similar regions,
such as the human torso, during clustering. Finally, to ensure
the consistency of all information contained in the skeleton
data, we introduce Multi-Granularity Appendage Alignment
(MGAA). By leveraging features from both macro and fine-
grained scales, we reduce the encoder’s sensitivity to noise
and enhance its robustness.

In summary, our new self-supervised learning framework
for body movement emotion recognition provides three key
contributions.

• We propose the ASP module to uncover latent macro
appendage information in skeleton data. This module
underscores the significance of appendage-based move-
ments in emotion recognition, enabling the encoder to
capture more comprehensive skeletal information. Conse-
quently, it enhances the overall performance of emotion
recognition.

• We propose the AIR framework, which transforms SSL
training into a simple process of iterative pretraining
using discrete labels. This framework leverages the more
comprehensive information obtained from the ASP mod-
ule to assign discrete labels to the corresponding data
samples. In this process, we introduce the ALR module to
eliminate redundant information during emotion category
recognition and enhance the encoder’s ability to capture
high-level emotional representations.

• Extensive experiments conducted on three datasets (i.e.,
Emilya, EGBM, KDAE) validate the effectiveness and
transferability of the proposed framework. The results
demonstrate that our approach surpasses state-of-the-
art self-supervised techniques across multiple evaluation
protocols.

II. RELATED WORK

A. Emotion Recognition from Skeleton-based Movements

Early approaches to identifying emotions through body
skeleton-based movement and posture primarily relied on
extracting hand-crafted features. [47] extracted features at
multiple levels using three-dimensional motion data of full-
body movement. These feature vectors were then input into
a support vector machine for classification. [48] use covari-
ance descriptors derived from 3D skeleton joint sequences,
representing them within the non-linear riemannian manifold
of symmetric positive definite matrices. This allowed them to
leverage geodesic distances and geometric means on the man-
ifold to perform emotion classification. In another approach,
[49] explores the contribution of different body movement
representations to the classification of emotions expressed
in various movement tasks. Their findings suggest that sub-
motion characteristics of action-related joints (e.g., temporal
features of foot motion during walking) capture additional
emotional properties. These features, when combined with
multi-level descriptions that include multidirectional repre-
sentations of full-body posture and a discrete analysis of
movement dynamics, enhance the recognition of emotional
body expressions.

In recent years, several studies [50], [51] have utilized
deep learning models to learn emotion representations from
body movements, typically processed as skeleton data. Given
that skeleton data is a non-Euclidean form of data, Graph
Convolutional Network (GCN)-based methods have garnered
significant attention [31], [52]. For instance, STEP [31] is one
of the first attempts to classify perceived human emotions
from skeleton-based data using GCN. [53] introduces a novel
AT-GCN network for skeleton sequences, which effectively
captures discriminative spatiotemporal features. The AT-GCN
simultaneously learns representations for multiple tasks, in-
cluding emotion recognition, identity recognition, and aux-
iliary prediction. Additionally, [54] propose a self-attention
enhanced spatial-temporal GCN for skeleton-based emotion
recognition. In this model, the spatial convolution component
models the body’s skeletal structure as a static graph, while
the self-attention mechanism dynamically constructs addi-
tional connections between joints to provide supplementary
information. More recently, EPIC [52] introduces a joint
reconstruction method to uncover latent connections between
body joints, followed by an ST-GCN to identify emotions.
While these approaches rely on supervised learning to extract
emotional features from GCNs, the limited availability of
labeled affective skeleton data, coupled with the potential for
mislabeling, can negatively impact model performance and
generalizability. To address this, we pre-train encoders on
unlabeled skeleton sequences using a self-supervised learning
framework, enabling the extraction of more robust and efficient
emotional representations.

B. Body Skeleton-based Self-supervised Methods

Self-supervised learning aims to learn effective feature
embedding functions from unlabeled data.

Previous work has primarily focused on tasks such as
predicting rotations [55], jigsaw puzzles [56], [57], and im-
age inpainting [58]. With the advent of methods like MoCo
[59] , SimCLR [60], CD-JBF-GCN [61] methods, contrastive
learning techniques have shown remarkable performance. The
purpose of these techniques is to bring the features of homolo-
gous samples closer and samples from different sources further
apart [19]. As for the reconstruction pre-training objective,
Audio2Vec [62] proposed the CBoW task to reconstruct the
acoustic feature of an audio clip of pre-determined duration
based on past and future clips. MAE [63] proposed masking
random patches of the input image and reconstruct the missing
pixels.

There have been numerous efforts to apply these SSL meth-
ods for skeleton-based tasks, such as skeleton-based action
recognition. For example, [64] introduces comparative learning
based on momentum updating and proposes a series of skele-
ton data augmentation strategies, which laid the groundwork
for subsequent research. [65] proposes a cross-view contrastive
learning framework for unsupervised 3D skeleton-based action
recognition by leveraging multiview complementary supervi-
sion signals. This method integrates both single-view con-
trastive learning and cross-view consistent knowledge mining
modules in a collaborative learning framework. [66] proposes
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a novel cross-modal mutual distillation framework, formulat-
ing the cross-modal interaction as a bidirectional knowledge
distillation problem. Recently, some researchers have explored
contrastive learning techniques to address self-supervised emo-
tion recognition tasks based on the body skeleton [67]. [34]
designs a cross-coordinate contrastive learning framework for
self-supervised emotion representation from body skeletons.
The method uses an uprising transformation to push positive
samples into an ambiguous semantic space, enabling the model
to capture high-level skeleton semantics while maintaining
semantic diversity. Additionally, [19] proposes an SSA method
for gait skeleton emotion recognition, incorporating upper
body jitter and random spatiotemporal masking to generate
diverse positive samples, helping the model learn more distinc-
tive features. As for the reconstruction pre-training objective,
SkeletonMAE [68] applied the Masked Autoencoder (MAE)
approach to 3D skeleton action representation learning, which
employs a skeleton-based encoder-decoder transformer for
spatial coordinate reconstruction. Skeleton2Vec [69] used a
transformer-based teacher encoder taking unmasked training
samples as input to create latent contextualized representations
as prediction targets.

While other skeleton-based tasks (e.g., action recogni-
tion) typically focus on distinguishing fine-grained differences
among various classes, emotion recognition instead places
greater emphasis on the high-level semantic information con-
veyed by the entire skeleton [34]. Compared with existing self-
supervised frameworks, the SSL approach based on discrete
labels is more adept at capturing these higher-level semantics,
thereby conveying the essential meaning of each class [39].
Although SSL methods based on discrete labels have already
been broadly applied to tasks in audio [41], [42], vision [38],
[44], and language [70], they remain largely unexplored in the
context of skeleton-based emotion recognition. To uncover the
emotional semantics concealed within substantial amounts of
unlabeled skeleton data, we propose leveraging discrete label-
based methods to capture high-level affective information for
emotion recognition.

C. Discrete Labels-based self-supervised methods

We effectively explore a self-monitoring strategy grounded
in discrete labels. For example, SpCL [71] partitions unlabeled
data into cluster-level and unclustered instance-level categories
using clustering as a feature representation in supervised signal
learning. [72] partitions unlabeled data into cluster-level and
unclustered instance-level categories using clustering as a
feature representation in supervised signal learning. Similarly,
[73] proposes the CSTCN method, which constructs a su-
pervised signal of action sequences via an online clustering
mechanism, complemented by data augmentation and triplet
contrastive sample construction strategies.

Nevertheless, when applying discrete label-based SSL meth-
ods to skeleton-based emotion recognition, two major chal-
lenges must be addressed. First, compared to other data
types (e.g., images), skeleton data inherently carries less
information. To encourage the encoder to extract a broader
range of emotional signals from skeleton data during discrete

label-based pretraining, we propose the Appendage-Skeleton
Partitioning (ASP) Module. This module enables the encoder
to capture a more comprehensive representation of emotions.
The second challenge arises from the presence of redundant
skeletal information during emotional expressions. For in-
stance, in a display of happiness, limb movements typically
exhibit a larger amplitude than the torso. However, the torso
information contained in the skeleton may compromise the ac-
curacy of the final discrete label generation, thereby hindering
the encoder’s capacity to learn high-level emotional semantics
during pretraining. To address this issue, we introduce a
discrete label-based pretraining paradigm, termed Appendage-
refined Multi-scale Discrete Label (AMDL), which allows the
encoder to acquire high-level emotional semantics during the
pretraining phase. In addition, we propose the Appendage
Label Refinement (ALR) module to mitigate the adverse
effects of redundant skeletal information on discrete label
generation, thereby further enhancing the encoder’s capability
to extract emotional semantics.

III. METHOD

Problem Definition. Given a skeleton sequence X includ-
ing T frames of J body joints under the global spatial coor-
dinate, the body skeleton sequence of a specific subject can
be represented as {vtj |t ∈ (1, . . . , T ), j ∈ (1, . . . , J)}, where
vtj represents the spatial coordinate of joint j at frame t of
that subject and can be denoted by a three-dimensional vector
(xt

j , y
t
j , z

t
j). Hence, X ∈ R3×T×J . Each skeleton sequence X

implicitly corresponds to an emotion label Y ∈ {1, . . . , C},
where C is the number of emotion categories. The goal of
unsupervised body skeleton-based emotion recognition is to
train an encoder using a set of unlabeled skeleton data X
that contains emotional information, enabling the encoder to
effectively extract emotional representations.

Overview. We propose a self-supervised emotion recogni-
tion framework called the Appendage-Informed Redundancy-
ignoring (AIR) discrete label framework, as illustrated in Fig.
2. To tackle the challenge of extracting multi-scale appendage
information from body skeleton-based data and to ensure that
the encoder captures more comprehensive emotional repre-
sentations, we propose the Appendage-Skeleton Partitioning
(ASP) module (Section III-A). The ASP module extracts
multi-scale appendage information from the original body
skeleton data. These appendage information input into the
encoder in both Joint, Bone, or Motion (J |B|M ) and Joint,
Bone, and Motion (J&B&M ) skeleton formats. To abstract
high-level emotion semantics, we propose the Appendage-
refined Multi-scale Discrete Label (AMDL) module (Section
III-B). In this framework, the encoder extracts feature map
M clusters from the multi-skeletons to generate and assign
hard discrete labels Yh to the corresponding skeletons. This
approach transforms encoder training into a classification
task, simplifying the overall process. To further mitigate the
noise introduced during clustering and reduce the effect of
redundant skeletal information, we propose the Appendage
Label Refinement (ALR) module (Section III-B2). The ALR
refines soft labels Ys by calculating the correlation between
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Fig. 2. The overall framework of the proposed AIR is illustrated as follows. Given an input sequence X , the Appendage-Skeleton Partitioning (ASP) module
is applied to obtain XL−A and XH−A. Subsequently, both J |B|M and J&B&M skeleton representations of this data are fed into the encoder. Using
the multi-skeleton data generates a feature map, which is used for clustering to produce hard labels (with the brown category in the figure as an example).
Then, the Appendage Label Refinement (ALR) module is employed to refine these hard labels. Simultaneously, to enhance the encoder’s robustness, the
Multi-Granularity Appendage Alignment is utilized to align the macro-scale appendage data with the original skeleton data.
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Fig. 3. The process of obtaining appendage-level skeleton data. Specifically,
(a) represents the original skeleton data, while (b) and (c) represent the Low-
Appendage (LA) and High-Appendage (HA) skeleton data, respectively.

the skeleton and its corresponding High-Appendage (HA) data
XHA. Finally, to ensure alignment and consistency between
the J |B|M and J&B&M skeleton data, we propose Multi-
Granularity Appendage Alignment (MGAA) (Section III-C).
This step enhances the encoder’s robustness and stability. After
the encoder is pre-trained, we use some evaluation protocols
(i.e., the linear evaluation protocol, transfer evaluation proto-
col, and so on.) to verify the emotion representation extraction
ability of the encoder.

A. Appendage-Skeleton Partitioning Module

In the field of body skeleton-based emotion recognition,
many studies tend to restrict the use of original skeleton ( i.e.,
joints, bones, or motions) information. However, expressing
emotions through body language typically involves a holistic
process that engages multiple appendages of the body. Beyond
the discriminative information provided by the coordinates
of each joint, latent movement information among different
appendages of the human body also provides abundant useful
cues for emotion recognition [74]–[76]. This is because, during

emotional expression, appendages typically play a primary
role in conveying active behaviors, and their movements
exhibit more pronounced variations compared to joint-level
movements, better reflecting individual emotional fluctuations
[77]. Moreover, appendage-level data provides richer dynamic
information at the micro-movement level, which helps improve
the sensitivity and discriminative power of emotion recognition
[78]. For instance, performing a ”happy” emotion involves
concurrent interactions among arms, legs, and the torso [79].
Motivated by [80], the Appendage-Skeleton Partitioning (ASP)
module addresses this challenge and enables the framework to
systematically unearth information on the connections among
appendages as a supplement to existing skeleton-based infor-
mation.

To provide a clearer understanding of the appendage skele-
ton partitioning process and to better illustrate the correspon-
dence between the original skeleton data and the appendage
skeleton structure, we reclassify the constituent nodes in the
skeleton data in this module according to the rules shown in
Fig. 3. First, based on the original skeleton information shown
in Fig.3(a) (showcases typical skeletal data that are composed
of J nodes (X ∈ R3×T×J )), the body part composition is
utilized to obtain the structure illustrated in Fig.3(b). In this
structure, for example, the left arm is divided into two parts,
the upper and lower segments, each aggregating the corre-
sponding joint-level information. Therefore, we refer to this
structure as the Low-Appendage Skeleton (XLA ∈ R3×T×10).
Subsequently, to further integrate the Low-Appendage Skele-
ton obtained in Fig.3(b), we construct a more holistic body
structure, as shown in Fig.3(c). In this figure, for example,
the left arm is merged into a single unified part, incorpo-
rating more comprehensive joint-level information. Compared
to Fig.3(b), this representation possesses a higher level of
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regional abstraction; thus, we refer to the skeleton shown in
Fig.3(c) as the High-Appendage Skeleton (XHA ∈ R3×T×5).

B. Appendage-refined Multi-scale Discrete Label Framework

To more effectively capture the high-dimensional affective
semantic information embedded in a large number of unla-
beled skeletons, we propose a self-monitoring approach based
on discrete labels. The details of our method are presented
below.

1) Discrete Label Generation: The discrete labels-based
method enables direct training of the encoder by generating
discrete hard labels Yh from unlabeled data, allowing the
encoder to effectively extract emotional representations from
the skeleton data. Given N unlabeled skeleton-based data
X , a two-stage training scheme is alternately adopted in
each training generation: (1) generating hard labels Yh via
clustering the features of the unlabeled training skeleton-based
instances, (2) training the encoder F (·) with the discrete hard
labels. Before training the encoder with the clustering-based
framework, we initialize the generation discrete labels using
the DBSCAN [81] algorithm. In skeleton-based paper such
as [73] follows the above clustering process, but some issues
need to be addressed. The density-based clustering algorithm
may produce outliers during the clustering process. These
outliers can impact the final classification results, leading to
significant deviations between the generated labels and the
actual distribution [82].

2) Suppress the effects of skeleton redundancy information:
As illustrated in Fig. 2, the X , XLA, and XHA input encoder
F (·) to get the feature map M, and using the M to generate
the initialization hard label Yh. However, the feature map
M, focusing mainly on the overall context, can occasionally
neglect specifics related to appendage features, and certain
features may contain information irrelevant to body skeleton-
based emotion. To address the above issue, inspired by [72],
we propose an Appendage Label Refinement (ALR) mod-
ule for clustering, as shown in Fig. 4. The module aims
to minimize the distance between the generated labels and
the actual distribution. We first perform K-Nearest Neighbor
(KNN) classification to select the top-1 samples independently
for the skeleton-based input data X and the High-Appendage
information XHA, which is generated by the ASP module and
then calculate the consistency score S.

Given R(X, k) and R(XH−A, k) as the sets of indices for
the top-1 samples in the ranked list of KNN classification for
X and XHA, respectively. This process is shown as follows:

S(X,XHA) =
|R(X, k) ∩R(XHA, k)|
|R(X, k) ∪R(XHA, k)|

, S ∈ (0, 1). (1)

Utilizing the obtained consistency score S mitigates noise in
the hard label Yh generates the final soft label Ys and enhances
the final recognition accuracy.

Learning all features M under identical pseudo-labels in-
variably leads to confusion among features, which adversely
affects the final recognition accuracy [83]. To address this
problem, the AMDL employs the consistency score to re-
fine the pseudo-label, thereby improving recognition perfor-
mance. Throughout this process, our proposed method applies

(a) (b) (c)

(a) (b) (c)

KNN

ASP

...

Softmax

×

Top ranked

...

[1,0,0]

[0.7,0.1,0.2]

Fig. 4. Refined hard label. Utilizing the ASP module to extract High-
Appendage (HA) information enables us to further minimize deviations from
the true labels during the clustering process.

cross-entropy loss to assess prediction accuracy and utilizes
Kullback-Leibler (KL) divergence to ensure stability during
the pre-training phase. The loss function for XHA features
are defined as:

LHA =
1

NHA

NHA∑
n=1

(S × CE(Ys, yHA))

+(1− S)×DKL(u||yHA),

(2)

where NHA represents the number of appendage-based skele-
tons, the u denotes a uniform vector, and CE and DKL denote
the cross-entropy loss and KL divergence, respectively.

Meanwhile, we enhance the labels with more accurate
information by aggregating predictions of High-Appendage
skeleton features, with different weights assigned to each
cross-agreement score. The loss function for this process is
defined as:

l = −
N∑
i=1

((S × yHA) + (1− S)× y) · log(Ys), (3)

where N represents the number of skeletons in the dataset.
Based on Eq.2 and 3, the classification loss is:

Lclass = LHA + l. (4)

C. Multi-Granularity Appendage Alignment

To ensure the harmonization between macro-scale ap-
pendage information and original skeleton data, we propose
the multi-granularity appendage alignment to enhance the
robustness of the encoder. Inspired by [84], [85], we utilize
intra- and inter-scale semantic alignment regularization to
learn more representative and discriminative features. The
intra-scale semantic loss is the mean squared error between
projected features of skeleton-based data samples, which is
defined as:

Lintra = MSE(ysingle, ymulti), y ∈ {yJ , yB , yM}, (5)

where MSE(·) is the mean squared error and ysingle and
ymulti are the projected features of Xsingle and Xmulti. No-
tice, the Xsingle (i.e., X , XL−A, and XH−A contain J |B|M
information) and Xmulti (i.e., X , XL−A, and XH−A contain
J&B&M information) include input skeleton-based data. The
intra-scale semantic loss function enables the identification
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of more subtle differences between J |B|M and J&B&M
information, effectively reducing the distance between samples
of the same category.

The objective of the inter-scale semantic loss is to maximize
the separation between data of different categories, thereby
clarifying boundaries between these categories. The inter-scale
semantic loss is defined as:

Linter = MSE(ysingle,N), y ∈ (yJ , yB , yM ), (6)

where N represents the average value of the combined in-
formation of yJ , yB , andyM . Based on Eqs.4, 5, and 6, the
overall loss of the AIR is:

L = Lclass + Linra + Linter. (7)

Algorithm 1: Training and Evaluation Process of AIR
framework.

Require: Set the parameters required for the AIR
framework α
while i ≤ Epochs do

if i ≤ warmup then
1. Update the encoder using Eq.5 and Eq.6 to ensure
that it has the fundamental capability to extract
features.

else if i > warmup then
2. Utilize the ASP module to obtain comprehensive
skeleton features, as shown in Section III-A.
3. The AMDL module is employed to generate
discrete labels for the data, while employing Eq.1
removes redundant details contained in the data.
4. Update the encoder simultaneously using Eq.7.

end if
end while
Validate the effectiveness and robustness of the pre-
-trained encoder through downstream tasks.

IV. EXPERIMENTS

A. Datasets

Emilya [86] dataset contained 8260 samples of body
movements expressing emotions. Eleven actors were asked to
express eight distinct emotions in the context of seven daily
actions, including Joy, Anger, Panic Fear, Anxiety, Sadness,
Shame, Pride and Neutral. All data in this dataset is recorded
using the Xsens MVN system. The system can capture 28 3D
joints at a frame rate of 120 Hz.

EGBM [87] contains 560 samples captured by the Kinect
V2 camera, each with a frame rate of 30 Hz. The data included
16 professional actors performing seven different emotions,
including Happiness, Sadness, Neutral, Anger, Disgust, Fear
and Surprise. Each emotion category contains 80 samples,
each consisting of 3D coordinates provided by 25 joints.

KDAE [88] dataset is recorded by a portable wireless
motion-capture system that can capture 72 joint node data
at a frame rate of 125 Hz. The dataset consists of 1402
samples performed by 22 actors expressing seven emotions,

Fig. 5. Impact of different eps values on final recognition accuracy.

namely Happiness, Sadness, Neutral, Anger, Disgust, Fear,
and Surprise. Since nearly half of the 72 joint node species
included in the sample are hand nodes. We pay attention to the
whole body movement process, and hand nodes are directly
excluded, and only 24 nodes are retained for analysis in our
manuscript.

B. Evaluation Protocol

Linear evaluation protocol. Initially, the encoder’s weights
are learned through self-supervised training. Subsequently, the
encoder’s weights are frozen, and a linear classifier is attached.
Finally, the entire model is trained with labelled data to achieve
the ultimate recognition accuracy.

Transfer learning evaluation protocol. The encoder is
initially trained on a source dataset. Then, the pre-trained
encoder, after being attached to a linear classifier, undergoes
fine-tuning on a target dataset.

Semi-supervised evaluation protocol. First, the encoder
uses the entire dataset for pre-training. Then, after being
attached to a linear classifier, it is fine-tuned with a specific
portion of labelled data.

C. Implementation Details

All experiments are carried out using two RTX 4090 GPUs.
In our setup, we select a simple Transformer, which comprises
1 layer and 1 head, as the feature extractor for the encoder.
The training of the AIR uses the Adam optimizer with a
weight decay of 5×10−4. The mini-batch size is 128, and the
learning rate is initially 5× 10−4 and subsequently decreased
to 5 × 10−5 at epoch 350 for Emilya, EGBM, and KDAE.
The model undergoes pre-training for 450 epochs on these
three emotion datasets. We randomly split the dataset into
training and testing sets at a 4 : 1 ratio. For DBSCAN [81],
the eps distance threshold is set to 0.6, and Fig. 5 presents
a comparative study on the selection of the hyperparameter
eps values. It is worth noting that the hyperparameters of
DBSCAN follow the settings specified in [72].

D. Experimental Results

In this section, we evaluate the proposed AIR against the
latest state-of-the-art methods across three key downstream
tasks, as listed in Section 4.2. Through comprehensive compar-
ative analyses, demonstrates superior performance compared
to existing methods.
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TABLE I
TOP-1 ACCURACY (%) COMPARISONS WITH STATE-OF-THE-ART METHODS USING THE LINEAR EVALUATION PROTOCOL FOR BODY SKELETON-BASED
(J&B&M SKELETON) EMOTION RECOGNITION ON DATASETS EMILYA, EGBM, AND KDAE. THE EMILYA* IS A SUBSET OF THE ORIGINAL DATASET,

WHICH CONTAINS ONLY FOUR CATEGORIES (I.E., ANGER, NEUTRAL, JOY, AND SADNESS). THE ”OURS-J” REFERS TO TRAINING CONDUCTED
EXCLUSIVELY ON J SKELETON DATA.

Method Emilya Emilya* EGBM KDAE FLOPs FPS Parameters
supervised
ST-GCN 68.70 65.98 28.44 24.20 1.41G 497.38 0.81M
AGCN 79.78 - 28.15 37.27 1.54G 185.51 0.86M

self-supervised
CrosSCLR 20.52 66.50 45.87 44.84 20.90G 57.63 19.24M

SSAL - 77.34 - - - - -
SCD Net 61.57 - 37.62 39.86 8.23G 18.91 100.18M

Skeleton Contrast 60.23 - 34.86 33.45 8.73G 40.96 9.02M
CMD 57.98 - 38.53 35.94 34.24G 17.79 268.80M

UmURL 67.05 - 45.87 40.93 3.13G 240.77 63.82M
AIR(Ours-J) 67.78 79.23 52.29 51.96 2.77G 174.59 45.75M
AIR(Ours) 69.67 81.55 56.88 55.51 5.20G 116.58 84.09M

TABLE II
TOP-1 ACCURACY (%) COMPARISONS WITH STATE-OF-THE-ART METHODS

USING THE TRANSFER-LEARNING EVALUATION PROTOCOL FOR BODY
SKELETON MOVEMENT-BASED EMOTION RECOGNITION. THE TARGET

DATASET IS KDAE.

Method Transfer to KDAE
Emilya EGBM

CMD 18.86 19.57
SCD Net 34.52 27.76

Skeleton Contrast 32.74 36.65
UmURL 38.43 30.25

AIR 43.77 38.08

1) Linear Evaluation Results: To explore the classification
performance of the AIR, we compare the top-1 accuracy
of various methods using the linear evaluation protocol on
different datasets, whose results are shown in Table I. Given
the relatively limited scope of body skeleton movement-based
emotion recognition (i.e., SSAL [19]), we have also included
skeleton-based action recognition methods (i.e., ST-GCN [89],
AGCN [90], CrosSCLR [65], SCD Net [91], Skeleton Contrast
[92], CMD [66], and UmURL [85]) for comparison. Our
method outperforms other methods in almost all cases in the
linear evaluation protocol on Emilya, EGBM, and KDAE. For
example, the results of our method surpass those of UmURL
[85] and CrosSCLR [65] by about 2.62, 11, and 10 percentage
points, respectively on the three data sets. It is worth noting
that the sample size of EGBM and KDAE is smaller than
that of Emilya. Still, our method performs better on the two
datasets, indicating that our method has more advantages in
processing small datasets. Meanwhile, AIR improved by 4.2
percentage points on the Emilya∗ dataset. Compared with the
SSAL method, indicating that our method is more accurate in
capturing body skeleton movement-based emotion features.

To verify the real-time performance of the proposed method,
we have added a comparison of FLOPs, FPS, and parameters
between the proposed AIR method and existing methods.
Compared to contrastive learning-based methods such as
CrossSCLR, our method achieves 5.20G FLOPs and 116.58
FPS while maintaining high emotion recognition performance,
making AIR more suitable for deployment on edge devices.
Furthermore, we introduce a variant of the AIR model trained

solely on J-skeleton data. Although this results in a slight
reduction in recognition accuracy, it still achieves a com-
petitive performance level. And the model’s parameter count
is significantly reduced, and inference speed is further im-
proved, with FLOPs and FPS reaching 2.77G and 174.59,
respectively. This ensures greater computational efficiency in
resource-constrained edge environments and meets the real-
time processing requirements of IoT devices.

The above comparison results indicate that the AIR frame-
work not only enhances classification performance but also
more effectively extracts high-level emotional semantic fea-
tures from skeleton data. This strengthens the encoder’s ca-
pability to capture emotional representations and addresses
key challenges in self-supervised emotion recognition. More-
over, the method is well suited for deployment in resource-
constrained edge environments.

E. Transfer Learning Evaluation Results

To investigate the generalization capability of the AIR in
the context of transfer learning, we compare its performance
with those of other state-of-the-art methods using the transfer-
learning evaluation protocol, whose results are presented in
Table II. The source dataset for pre-training is either Emilya or
EGBM, and the target dataset for fine-tuning is KDAE. When
Emilya and EGBM as source datasets, the performance of the
AIR surpasses other methods. This suggests that AIR, as a self-
supervised method, can be utilized more effectively for pre-
training using data that differ from the downstream tasks. The
final recognition accuracy demonstrates that, compared with
other methods, our approach can extract emotional features at
a higher level of abstraction, thereby enhancing the robustness
of the encoder during the self-supervised process.

F. Semi-supervised Evaluation Results

Finally, using the semi-supervised evaluation protocol, we
compare the AIR with other state-of-the-art methods to explore
its ability to learn with few labels. Table III shows results
on the EGBM dataset, with 1%, 5%, 10%, and 50% of the
labeled data randomly sampled for fine-tuning. In the case
of the semi-supervised evaluation protocol with 1% labeled
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TABLE III
TOP-1 ACCURACY (%) COMPARISONS WITH STATE-OF-THE-ART METHODS

USING THE SEMI-SUPERVISED EVALUATION PROTOCOL FOR BODY
SKELETON MOVEMENT-BASED EMOTION RECOGNITION ON THE EGBM

DATASET.

Method 1% 5% 10% 50%
CrosSCLR 29.36 31.19 38.53 43.12
SCD Net 17.43 18.35 20.19 28.44
CMD 22.02 27.52 25.69 33.95
Skeleton Contrast 19.27 20.18 21.10 32.11
UmURL 25.69 29.36 33.03 39.45
AIR 26.61 35.78 39.45 52.29

TABLE IV
THE ABLATION STUDY OF TOP-1 ACCURACY (%) RESULTS ON THE EGBM

DATASET WHEN DIFFERENT COMBINATIONS OF FUNCTIONAL MODULES
ARE ACTIVATED.

Baseline ASP AMDL AMDL + ALR Accuracy
✓ 45.87
✓ ✓ 47.71
✓ ✓ 46.79
✓ ✓ 52.29
✓ ✓ ✓ 56.88

√ √
5 √

0 0.14

0 0.05

0.026 0.18

0.026 0.21

0.011 0.03

Fig. 6. Effects of appendage-based partitioning on recognition accuracy. In
the ALR module, the influence of labels generated by different skeleton
data partitioning on the ability of the final encoder to extract emotional
representation.

data used for fine-tuning, the result of the AIR is significantly
higher than those of others except for being slightly lower
than that of CrosSCLR. This may be because labels generated
from too little data during the clustering process introduce
more noise, leading to significant discrepancies from the true
categories and ultimately impairing the encoder’s ability to
extract accurate representations. Nonetheless, a comparative
analysis reveals that our method substantially outperforms
other approaches in nearly all scenarios. This finding indicates
that, even under semi-supervised conditions, our approach
maintains a strong ability to capture high-level affective se-
mantics, thereby delivering superior classification results.

V. ABLATION STUDIES AND ANALYSIS

The ablation study evaluates the effectiveness of the ASP,
AMDL, and ALR modules of the AIR. The results when
different combinations of these modules are activated shown
in Table IV. The baseline model is a variant of the proposed
AIR when all these modules are deactivated.

TABLE V
THE ABLATION STUDY OF THE DIFFERENT GRANULARITY OF APPENDAGE

LEVELS FEATURE ON THE EGBM DATASET. THE Baseline∗ INDICATES
THE BASELINE MODEL OF ADDING THE ASP MODULE. DIFFERENT SCALE

APPENDAGE INFORMATION IS USED, WITH ”LA”, ”HA”, AND ”LH”
REPRESENTING THE LOW-APPENDAGE SKELETON INFORMATION,

HIGH-APPENDAGE SKELETON INFORMATION, AND A COMBINATION OF
’LA’ AND ’HA’ SKELETON INFORMATION.

Baseline∗ LA HA LH Accuracy (%)
✓ 47.71
✓ ✓ 48.90
✓ ✓ 53.46
✓ ✓ 56.88

A. Effectiveness of the appendage connection information

We first investigate the effect of the ASP module to ex-
plore the effectiveness of appendage connection information.
The ASP module enhances the baseline model by providing
additional information on the connections among human ap-
pendages besides the original skeleton-based information, re-
sulting in a 2 percentage points increase in the final recognition
accuracy compared to cases when the ASP module is deacti-
vated. This demonstrates that in body skeleton-based emotion
recognition, human appendage connection information plays a
significant role in accurately identifying corresponding emo-
tion categories.

B. Validity of Multiple Appendage Scales

We further examine the effectiveness of different appendage
scales by the ASP module, whose results are shown in Table V.
Compared to the baseline∗ result with only original skeleton
data, the LA and HA skeleton data increase the emotion recog-
nition accuracy by 1.1 and 4.5 percentage points, respectively.
The encoder’s ability to extract emotional representations is
further enhanced by incorporating various appendage informa-
tion. Our findings indicate that incorporating both LA and HA
information simultaneously is more effective than processing
them separately. This underscores the crucial role of body
information in addressing emotion recognition tasks based on
skeletal data.

C. Effectiveness of the Discrete label-based AMDL

Next, we examine the effectiveness of the AMDL. This
module offers a novel perspective on presentation learning by
transforming the conventional SSL framework into a process
that directly predicts the emotional categories of skeleton
data. Through this transformation, the emotional semantics
inherent in skeleton data can be captured more effectively,
thereby enhancing the encoder’s ability to recognize emotions.
As indicated in Table IV, the use of the clustering-based
framework contributes a 1 percentage points improvement
in recognition performance compared to the baseline model.
Additionally, compared to other methods in Table I, our
approach achieves state-of-the-art performance using only the
discrete label-based module. These findings suggest that the
SSL method based on discrete tags can more effectively
extract the high-level affective semantics embedded in the
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(a) Baseline (b) MGAA (c) MGAA & AMDL (d) Ours(AIR)

Fig. 7. The impact of different modules on the feature extraction capability of the encoder is analyzed. Specifically, (a) presents the clustering results under
the baseline setting of this work; (b) illustrates the clustering results when features are extracted using only the MGAA module; (c) shows the clustering
results when both the MGAA and AMDL modules are utilized; and (d) displays the clustering results based on features extracted by the final AIR method.

skeleton data, thereby improving overall emotion recognition
performance.

For the ALR module, we discussed whether to use the
appendage information provided by the ASP module, as shown
in Fig. 6. We use both equalized local skeleton information and
macro-scale appendage information to refine the categories
generated by the clustering process. Comparisons show that
the refinement based on appendage information more closely
aligns with the true category distribution, significantly im-
proving the final emotion recognition accuracy (e.g., by 4.5
percentage points on the EGBM dataset). As shown in Fig. 8,
the ALR module effectively distinguishes the importance of
different body parts in emotion category classification. Using
a sample from the Sadness category in the Emilya dataset
as an example, in which the subject expresses sadness by
covering their face with both hands. This figure demonstrates
that the ALR module can effectively identify the hands as
more important than other parts, such as the torso.

Meanwhile, to verify the effectiveness of our method in
suppressing the inherent noise in skeleton data and its impact
on generating accurate pseudo-labels, we extract skeleton
features without and with the ALR module and visualize their
clustering results, as shown in Fig. 9. Using samples from the
Anger category as an example, Fig.9(a) shows that directly
generating pseudo-labels from skeleton features can result
in multiple distinct clusters due to the presence of inherent
skeleton noise. This noise directly affects the accuracy of
pseudo-label generation and interferes with the ability of self-
supervised methods to extract accurate emotional representa-
tions. In contrast, by applying the AIR method with the ALR
module, the noise present in the skeleton information is ef-
fectively suppressed, allowing features to be clustered into the
same class as much as possible, as illustrated in Fig.9(b). This
comparison confirms that our method progressively refines the
generated pseudo-labels, enabling the model to learn correct
emotional representations for categories such as Anger and
thereby improving the final classification performance.

D. t-SNE visualization with different modules

To validate the effectiveness of different modules in enhanc-
ing the proposed method’s ability to extract emotional repre-
sentations from skeleton data, we extract emotional features
based on various module combinations and visualize their

(a) (b) (c)

(a) Joint (b) Low Appendage (c) High Appendage

Score

Sad 

Anger

0.0526,

0.0526,0.0000,

0.1765，0.0000 

0
w/o ALR with ALR 

with ALR w/o ALR

(b)

1

Selected Score

with ALR w/o ALR

HighLow

w/o ALR with ALR 

(a) (b)

raw skeleton data  skeleton parts with different scores

Score
0

w/o ALR: Neutral with ALR: Sadness 

1

❌ ✔

Fig. 8. Comparison of the results with and without the ALR module. Using
a sample from the Sadness category as an example, ”w/o ALR” denotes the
case without applying the ALR module (where black indicates the original
skeleton information), while ”with ALR” denotes the changes in appendage
scores after applying the ALR module (where a deeper red color indicates a
higher score).

(a) (b)

Fig. 9. Visualization of the noise suppression effect of our method.
Specifically, (a) clustering skeleton features directly results in inconsistent
cluster labels due to inherent noise, while (b) applying the ALR module
assigns consistent labels to skeleton features within the same cluster, thereby
mitigating the impact of noise on training. Red and blue boxes indicate
different clusters generated by the clustering process.

clustering distributions using the t-SNE method. The detailed
results are presented in Fig. 7. First, compared to the baseline
method (Fig.7(a)), introducing the MGAA module effectively
clusters features of the same class together (Fig.7(b)), although
the boundaries between different clusters remain relatively
blurred. Second, by jointly using the MGAA and AMDL mod-
ules, the distances between different clusters are significantly
increased (Fig.7(c)), resulting in clearer boundaries between
classes. However, the intra-class features remain insufficiently
compact. Finally, by incorporating the ASP module, which
further mines appendage-level emotional information from the
skeleton data, the intra-cluster distances are reduced, leading to
tighter clustering of features within the same class (Fig.7(d)).

These comparisons demonstrate that the proposed self-
supervised method can effectively extract emotional features
from unlabeled data and achieve both accurate and robust
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classification performance.

VI. CONCLUSION

In this article, we propose the Appendage-Informed
Redundancy-Ignoring (AIR) discrete label framework to ex-
tract high-level emotional information from large-scale, unla-
beled skeleton data collected by smart cameras in IoT environ-
ments. The proposed framework introduces three novel sub-
modules to enhance the encoder’s capability in emotion rep-
resentation learning. First, the Macro-Scale Appendage (ASP)
module incorporates appendage-scale information from the
original skeleton data, enabling the encoder to capture richer
emotional representations. Second, the Appendage-Refined
Multi-Scale Discrete Label (AMDL) module prioritizes high-
level emotional semantics over subtle joint movements. Unlike
previous methods based on contrastive or generative learning
for pre-training, the discrete label-based approach encourages
SSL models to focus on high-level semantics, aligning more
closely with human perception. Third, the Appendage Label
Refinement (ALR) module mitigates label noise by leveraging
the complementary relationship between appendage hierarchy
features extracted by the ASP module and the original skeleton
features, thereby reducing nonessential information that may
hinder accurate emotional categorization. Additionally, we in-
troduce the Multi-Granularity Appendage Alignment (MGAA)
module, which aligns appendage information across different
scales during pre-training, further enhancing the robustness
of the encoder. Extensive experiments conducted on three
datasets demonstrate the effectiveness of the AIR framework,
particularly under linear evaluation protocols. Moreover, trans-
fer evaluation protocols confirm that the AIR method enhances
the encoder’s transferability.

Building upon this work, we aim to further explore the
following two directions in the future: First, our work demon-
strates notable improvements over existing methods in single-
person emotion recognition tasks. In future work, we aim to
extend the proposed method to multi-person scenarios, en-
abling large-scale emotion state detection and analysis across
crowds. Second, this manuscript provides a comprehensive
analysis of emotional representations in skeleton data and
achieves state-of-the-art performance in emotion recognition.
Building upon this foundation, we aim to extend the method
to support multimodal emotion recognition (e.g., combining
audio and video) by analyzing emotional data from multiple
modalities, thereby further enhancing the performance of self-
supervised emotion recognition.
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