
SMapReduce: Optimising Resource Allocation by Managing Working Slots at
Runtime

Feng Liang
Department of Computer Science

The University of Hong Kong
Hong Kong

fliang@cs.hku.hk

Francis C.M. Lau
Department of Computer Science

The University of Hong Kong
Hong Kong

fcmlau@cs.hku.hk

Abstract—Hadoop version 1 (HadoopV1) and version 2
(YARN) manage the resources in a distributed system in dif-
ferent ways. HadoopV1 executes MapReduce tasks in working
slots that are statically configured; YARN uses a set of task
containers to encapsulate its memory and CPU resources.
However, neither of them considers the runtime performance
of the cluster when deciding the proper number of concurrent
tasks to run on each node to achieve the optimal throughput.
In order to gain higher performance, the users of Hadoop
usually need to use their experience to carefully configure the
resources of the cluster and the resources needed by their
jobs. But as the workload is typically always changing in
the cluster, rarely could such a manual configuration lead to
optimized performance. In this paper, we study the MapReduce
job performance in HadoopV1 and YARN with different
resource configurations, and model the cluster throughput in
terms of the resource capacity of the cluster. We propose
SMapReduce, which can dynamically manage a proper number
of concurrent tasks running on each node. SMapReduce can
gain the maximum job throughput by considering the thrashing
phenomenon and the balancing between map and reduce tasks.
Evaluation results show that SMapReduce can yield significant
performance speedup comparing to both HadoopV1 and YARN
for various MapReduce workloads.

Keywords-Resource Management; MapReduce; Hadoop;
YARN; Performance Modeling

I. INTRODUCTION

Nowadays, big data processing and analysis is critical
for many scientific and industrial applications. MapReduce
[1], a popular distributed computing framework proposed
by Google, because of easy programming, high performance
and fault tolerance, is a popular tool for big data analysis [2],
[3], [4]. Programmers only need to adapt the computation
tasks to the map and reduce interfaces, and MapReduce will
take care of managing and running the tasks efficiently in
the distributed system.

Hadoop [5] implements MapReduce as an open-source
project. Hadoop version 1 (HadoopV1) uses a slot-based de-
sign. Each working node (called task tracker) in HadoopV1
executes map tasks and reduce tasks in map slots and reduce
slots, respectively. The numbers of the map slots and reduce
slots are configured statically before system startup and

cannot be changed at runtime. Map tasks and reduce tasks
are assigned to the free slots accordingly. As the workload
of many MapReduce jobs can vary greatly during runtime,
the simple design and inflexibility of static working slots
cannot adapt to the dynamic working behaviour, resulting
easily in underutilisation of available resources or depletion
of some resources.

Hadoop evolved to version 2 which is known as YARN
[6]. YARN is container-based and treats the resources in
the cluster as a combination of memories and CPU cores.
The users of YARN can configure the memories and CPU
cores of the containers which are used to run the tasks
of the job. Thus, YARN offers a more precise control of
the resources of the cluster than HadoopV1. However, to
determine the suitable amount of resources to assign to the
containers is often largely a guesswork by the users. If too
little resources is assigned, some tasks might fail due to
the lack of memories at runtime; if too much is assigned, a
few containers would fill a working node, and the allocated
resources could end up poorly utilized. In practice, users
tend to configure the container resources lavishly, and thus
underutilization of rosources is a common phenomenon,
which means that optimal throughput is hardly achieved.

HadoopV1 and YARN use different methods to allocate
the resources to the jobs. But the resource configuration
problem in either version can be seen as the same funda-
mental problem: to find out the proper number of concurrent
tasks (or working slots) to run on a working node in
order to achieve higher job throughput. The challenge is
that this number cannot be decided statically in a dynamic
environment. Figuring out this proper number of concurrent
tasks is not easy as the jobs can be very different in terms
of their compute logic and the data I/O size.

Another problem with MapReduce is that there is a
synchronised barrier between the map phase and the reduce
phase. The outputs of all map tasks need to be stored locally
in some intermediate files and the reduce tasks must shuffle
all the map outputs of a particular partition of the problem
to the working nodes before these nodes can start reducing
the data. This barrier prevents the reduce function from

executing in parallel with the map function of the same job
which can increase the total execution time of the job if
the map outputs are plenty. YARN sets a higher scheduling
priority for map tasks than reduce tasks to make sure the
maps tasks can obtain more resources than the reduce tasks.
But the optimal scheduling policy for MapReduce jobs to
achieve a higher job throughput has not been addressed.

In this paper, we would not try to break this barrier
between the map phase and reduce phase. Breaking this
barrier either introduces another barrier or requires ex-
tra resources to increase logical parallelism, but optimal
throughput cannot be guaranteed. Instead, we study the
behaviour and performance of MapReduce under different
resource configurations; we model the job execution time in
terms of the resource capacity and resource allocation, and
propose a working slot allocation method which can help
the system to achieve the maximum parallelism on both
sides of the barrier. We develop SMapReduce, which can
dynamically manage the working slots for map and reduce
tasks at runtime to achieve the maximum utilisation of the
CPU and network bandwidth for MapReduce jobs.

This paper is organised as follows. Section II introduces
Hadoop and the thrashing phenomenon in multithreading
systems, and gives the motivation for managing the working
slots at runtime. Sections III and IV describe the design
and implementation of the SMapReduce system. Section V
evaluates SMapReduce using various benchmarks. Related
works on improving the performance of MapReduce are
discussed in Section VI. We highlight some possible future
work and conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the architecture and work-
ing mechanism of Hadoop. Understanding how MapRe-
duce works, we then discuss our motivation for developing
SMapReduce, a working MapReduce system with dynamic
slot management. We also discuss the thrashing phenomenon
in multithreading systems, which could affect the runtime
behaviour of MapReduce and is used as a guide in the design
of the slot management policy.

A. Hadoop

1) Overview of MapReduce: MapReduce is one of the
major components in Hadoop. MapReduce divides any given
computation into two primitives: map and reduce. The map
primitive organises a list of values by their keys and the
reduce primitive aggregates the list of values to a single
value for each key.

In HadoopV1, the structure of MapReduce consists of
two main types of components: a job tracker (also called
the master) and several task trackers (also called the worker
nodes). The job tracker is the master computer node that
manages the running of the whole system. It maintains the
runtime information of the whole system, assigns the map

and reduce tasks to the task trackers (based on the heartbeat
mechanism between the task tracker and the job tracker),
and coordinates the running of the MapReduce jobs. The
task trackers are the computer nodes that actually work on
the tasks. The task trackers run the map and reduce tasks in
map and reduce working slots accordingly.

In YARN, the structure is like that of HadoopV1, except
that there is not a single central job tracker. The role
of managing the processing of a job is taken up by the
application master, which is started on a random node when
a job is submitted for running. A single resource manager
manages the resources of memories and CPU cores of the
cluster and is in charge of allocating these resources to the
jobs. The role of the task trackers in HadoopV1 is replaced
by that of the node managers. Node managers run the tasks
in the resource containers. For uniformity, in the following
discussions, we use the slot to denote the slot in HadoopV1
and the container in YARN, which runs a task in a working
node.

By default, when a map task is assigned to the task tracker
by the job tracker, the task tracker will find a vacant map
slot to launch a new thread that runs a Java Virtual Machine
(JVM); the map task will run on this JVM. The same for
the reduce task. The map task can be divided into three
(sub-)phases: the map phase, the sort and spill phase, and
plus optionally the combine phase. All the phases do mainly
computing, for which the allocated CPU time is the decisive
factor of their performance. The reduce task consists of
three (sub-)phases: the shuffle phase, the sort phase and the
reduce phase. The shuffle phase reads a partition of map
outputs of all the map tasks from all the task trackers. The
network bandwidth of the cluster is the decisive factor of
the performance of this phase. The running of the shuffle
phase can overlap with the running map tasks, but it will
not end (and hence the remaining two phases cannot start)
until all the map tasks finish. This is the synchronisation
barrier between the map tasks and the reduce phase. With a
limited number of map slots and reduce slots in the cluster,
and given many map tasks and reduce tasks for the job, there
will be multiple waves of map tasks and reduce tasks. For
the first wave of the reduce tasks, their shuffle phase can
overlap with the running of all waves of the map tasks, but
it can only proceed to the remaining phases of the reduce
tasks after all the map tasks finish.

2) Discussion on the Working Slots: We focus on the
duration during which the map tasks and the shuffle phases
of the first wave of reduce tasks are running in parallel.
We refer to this as the “overlapped section”. We want
to maximise the utilisation of the required resources for
the execution of the tasks in spite of the existence of the
synchronisation barrier. The required resources are the CPU
time slices (for the mapping) and the network bandwidth (for
the shuffling). If we can coordinate the progresses of these
two types of tasks, thus making a full utilisation of the CPU

and network resources simultaneously, we can achieve high
performance when running MapReduce jobs.

For map-heavy jobs, the volume of output data needed
to be shuffled is small comparing to the volume of input
data the map tasks need to handle. In this case, when
there are still map tasks working (i.e., before the barrier
is reached), the reduce slots will spend most of their time
waiting for mapped output data to shuffle. We could allocate
more CPU time slices to the map tasks, that is, more
map slots, so that the system can finish the map tasks,
cross the synchronisation barrier faster, and go on to the
reduce tasks. For reduce-heavy jobs, the data needed to
be shuffle are large. The shuffle phases require both CPU
time and network bandwidth to sort and transfer the data
for reducing. If there are too many map slots, besides the
overhead of multithreading scheduling, the shuffle phases
may not be able to finish transferring most of the data
needed for the corresponding reduce phases, and will have
to spend additional time to shuffle data after the barrier.
After the synchronisation barrier, when the shuffle phases
are still running, there are no more map tasks, the reduce
phase is waiting, and the system will spend most of the
time transferring data through the network, while the CPU
is being left idle.

If the Hadoop system can realise the existence of the map
and reduce synchronisation barrier and allocate the proper
numbers of working slots for the map tasks and the reduce
tasks dynamically at runtime, the system could make full
utilisation of the CPU and network resources available and
achieve higher performance. This is the motivation behind
SMapReduce, an enhanced MapReduce with dynamic slot
management.

B. Thrashing

Thrashing [7] happens when there are too many threads in
the system, and the virtual memory system is in a constant
state of paging between the disk and the memory; this
causes the CPU utilisation to drop drastically. A similar
phenomenon regarding CPU throughput can happen in the
MapReduce system. When the number of working slots
for map tasks and reduce tasks increases, CPU throughput
increases; but when the number of working slots reaches a
thrashing point, the throughput of the working tasks begins
to decrease.

Generally, if we allocate more working slots to the map
tasks or reduce tasks, the throughput of the tasks will
increase. The increase of the number of working slots,
however, is accompanied by a corresponding increase in
the thread scheduling overhead, which creates a threshold
in the number of working slots. When the number reaches
this threshold, the scheduling overhead starts to outweigh
the benefit gained, and the throughput will begin to de-
crease with the rising number. Fig. 1 shows the thrashing
phenomenon in HadoopV1 and YARN with three of the

Figure 1. Thrashing: In the Terasort, TermVector, and Grep benchmarks,
the curves of the throughput of the map slots versus the number of map
slots in each node begins to fall when the number of map slots reaches the
thrashing point.

benchmarks we used in our workbench (to be introduced
in Section V). We can see from the figure that the map
task throughput is sensitive to the number of configured
map slots. Finding a proper number of slots for the task
is meaningful in order to increase the throughput of the
system. In all of the benchmarks, the throughput increases
proportionally to the number of map slots. When the number
of map slots reaches the thrashing point, the throughput
stops increasing or begins to fall. The thrashing points of
different job types can be different. In general, map-heavy
jobs have a higher thrashing point than reduce-heavy jobs.
This is because reduce-heavy jobs spend more resources on
shuffling and reducing than map-heavy jobs and suffer an
early map thrashing point.

The thrashing point will guide us to decide on the number
of working slots to allocate to the map tasks or reduce
tasks when we manage the working slots in SMapReduce
at runtime.

III. DESIGN OF SMAPREDUCE

In this section, we present the architecture of SMapRe-
duce and the design of the working slot management algo-
rithm, and discuss several important issues that affect the
design.

A. Overview of SMapReduce

We design and implement SMapReduce based on the
existing framework of the slot-based design of HadoopV1 by
adding a working slot managing mechanism. Fig. 2 shows
the architecture of SMapReduce. The blocks in white colour
are components that are the same as in MapReduce, the
blocks in gradient grey are components that are modified
from HadoopV1, and the blocks in dark grey are components
that are new in SMapReduce.

The job tracker of SMapReduce consists of three main
components: the task scheduler, the heartbeat handler, and
the slot manager. The task scheduler decides which task
should be run on which task tracker. It is the same as
that in MapReduce. The heartbeat handler collects heartbeat

Figure 2. The Architecture of SMapReduce

information from the task trackers and responds with the
commands for the task trackers to execute. The commands
from the job tracker to the task trackers include the tasks
to run or clean up. In SMapReduce, job tracker also sends
commands of changing the working slot number to the task
trackers by heartbeats. The slot manager is a thread that
makes decisions on how many slots should be in the task
tracker in order to optimise the resource utilisation.

The task tracker of SMapReduce is made up of these
components: the heartbeat sender, the slot changer and the
map task launcher and reduce task launcher. In addition to
the task tracker’s status and the running status of tasks, the
task trackers also supply statistics of the running tasks to
the job tracker by heartbeats. These task statistics help the
slot manager in the job tracker to determine the types of the
running jobs and the numbers of slots needed for both map
tasks and reduce tasks. The slot changer changes the number
of working slots in the task tracker. the task launchers launch
map tasks and reduce tasks on the available working slots.

B. Slot Manager

The slot manager is the critical component in managing
the working slots in SMapReduce. The slot manager makes
use the runtime information of the MapReduce jobs to
determine the proper map slots and reduce slots for the jobs
at that moment.

1) Balancing between Map and Shuffle Throughput: One
important aim of SMapReduce is to properly allocate the
working slots for the map tasks and reduce tasks in the
overlapped section, so that the jobs can progress to the
barrier faster and thus have a shorter execution time.

Based on the workload, the total progress of a MapReduce
job can be divided into two parts: the front stretch is from
the start of the job to the end of execution of the shuffle
phases of the first wave, and the tail stretch is from this
point to the end of execution of the job. A job is so divided
because in the front stretch, the map phases and the shuffling
phases of the same job are running in parallel, while in the
tail stretch, only reduce tasks are running.

For the front stretch, SMapReduce tries to balance the
allocation of working slots for the map tasks and reduce
tasks so that the execution time of this part is minimised. For

map-heavy jobs, the map output data are small and it should
be easy for the shuffle rate to match the map output rate. If
they do match, when the map tasks finish, the shuffle phase
is also more or less finished. In this case, the time needed
to finish the work of the front stretch of the progress is:

t =
M

Tm
,

where M is the workload of the map tasks and Tm is the
throughput of the map tasks. When the shuffle rate can match
the map output rate, since the map workload M is a constant,
to achieve minimum execution time of the front stretch, we
only need to maximise the throughput of the map tasks in
this part. As the map throughput increases, the map output
rate also increases. It may happen that the map output rate
increases to a point where the shuffle rate cannot catch up.
This in fact would be the situation of reduce-heavy jobs.

For reduce-heavy jobs, the data needed to be shuffled in
the front stretch is heavy. It is possible that the shuffle rate
cannot catch up with the map output rate—i.e., the shuffle
phases still have a lot of data to transfer after all map tasks
have finished. In the case when shuffle rate cannot match
the map output rate, the time needed to finish the work of
the former progress part is:

t =
M

Tm
+

R− M
Tm

× Tr1

Tr2
,

where M is the workload of the map tasks, Tm is the
throughput of map tasks, R is the workload of the first wave
of the shuffle phases, Tr1 is the shuffle throughput of the
shuffle phases when the map tasks are still running, and Tr2

is the shuffle throughput after the map tasks finish. Note
that Tr2 is a constant in the system since the system only
needs to run reduce tasks and there will not be any resource
sharing between the map tasks and the reduce tasks. It can
be assumed that total throughput of the system is a constant,
no matter how the resources are divided between the map
tasks and the reduce tasks, and thus we have T = Tm+Tr1,
where T is the total throughput of the system. The above
equation can be simplified to:

t =
R+M

Tr2
− (T − Tr2)×M

Tm × Tr2
.

Since all the variables except Tm are constant, if we want
to reduce the time t, the map task throughput Tm should
decrease. This makes sense. When map tasks and shuffle
phases work together to the full extent, the system is making
full use of the available resources working for the job. If the
map tasks progress too quickly and finish before the shuffle
phases finish, the system will only use part of the resources
for the shuffle phases afterwards.

When the map throughput is reduced to shorten the
execution in the reduce-heavy case, the map output rate also
falls. It can come to the situation where the shuffle rate can

match the map output rate again. The state when the shuffle
rate can just catch up with the map output rate is called the
Balanced State. When the system is in the balanced state,
the running map tasks and shuffle phases are making full
utilisation of the resources of the system, and can achieve the
minimum execution time of the front stretch of the progress.

As discussed in Section II, the throughput of the map tasks
can be controlled by the number of map slots in the system,
as long as the map tasks have not reached the thrashing
point.

2) Detecting the Thrashing Point: Increasing the slot
number does not always lead to increase in the throughput of
the tasks. The slot manager needs to detect the occurrence of
thrashing when it tries to control the throughput of the map
tasks or reduce tasks by adjusting the number of working
slots.

Detecting the thrashing point is easy. Take the map tasks
for instance. For every number of map slots, the slot manager
records the average processing rate of all the map tasks in
the system for that slot number. If the number of map slots
increases, the slot manager calculates the average processing
rate of the map tasks running on the new number of map
slots and compares it with the previous average processing
rate. If the current rate is smaller than the previous one, the
slot manager knows that the system has reached a thrashing
point and will stop increasing the number of map slots.

3) Switching Map Slots to Reduce Slots: When the front
stretch comes to the end, the number of unfinished map tasks
decreases and fewer map slots are needed to run the map
tasks. In the tail stretch, there are only reduce tasks running.
Under this circumstance, the slot manager can reduce the
number of map slots and increase the number of reduce
slots appropriately to accelerate the execution the remaining
unfinished reduce tasks.

However, we will only increase the reduce slots in the
tail stretch when the job shuffle size is small. When the job
shuffle size is large, increasing the reduce slots will add a
large number of threads copying the map outputs, which
can jam the network and thus reduce the shuffle rate on the
contrary.

C. Messages in Heartbeat

The slot manager requires statistics of the running job,
such as the shuffle rate, in order to balance the map and
reduce throughput, to detect the occurrence of thrashing, and
to judge the progress of the job. These statistics need to
be collected from the task trackers from time to time. We
inherits the heartbeat mechanism between the job tracker
and the task trackers of MapReduce to support the running
of the slot manager.

In addition to the original heartbeats of MapReduce, the
task trackers of SMapReduce adds the following information
to each heartbeat message: the map input processing rate, the

shuffle rate and the map output rate. The slot manager can
aggregate these data from all the task trackers.

In the job tracker’s end, the heartbeat handler detects
whether the number of map slots or reduce slots of a task
tracker is different from the number decided by the slot
manager. If it is, the heartbeat handler will send a command
to ask the task tracker to update its number of working slots
as the heartbeat response. After receiving the command to
update the working slot number, the task tracker passes it
to the slot changer to handle the changing of the number of
working slots.

D. Lazy Slot Changing in Slot Changer

The slot changer of the task tracker has two roles: one of
changing the number of map slots and the other of changing
the number of reduce slots. The slot changer does not change
the number of the slots directly. Instead, it sends a signal
to the task launcher indicating that the number of working
slots has changed. The task launcher will then change the
working slot number, but lazily.

There is a map task launcher and a reduce task launcher
in the task tracker. They launch map tasks and reduce tasks
using the available working slots, respectively. When the
task launcher receives a signal from the slot changer, the
signal can ask the task launcher either to increase or to
decrease the number of the working slots. When it is the
increase signal, the task launcher should be able to add some
working slots which are ready for launching tasks. When it
is the decrease signal, the task launcher may be in a state
that all the slots are working on the tasks, which means that
there is no free slot at that moment; if the task launcher shuts
down one slot immediately, the running task, which is in the
middle of its progress, must be terminated and rescheduled
in another free slot later. This rescheduling overhead should
be avoided because it wastes the resources that have already
been allocated to that task. If the slot changing action is
frequent, the rescheduling cost can be substantial.

The task launcher therefore applies the lazy policy in
changing the number of the working slots. When it needs to
reduce the number of the slots and there are not enough idle
slots to shut down, it will shut down the idle slots first and
remember the number of slots that still need to be shut down
when there are idle slots later. When the busy slots finish
running the tasks and become idle, the task launcher will
know that it is safe to shut down some idle slots if the total
number of slots is greater than expected. In the case that the
task launcher wants to increment the number of slots, it will
be safe for the task launcher to add the slots immediately.

IV. IMPLEMENTATION OF SMAPREDUCE

This section will present some of the implementation
details of SMapReduce. We implement SMapReduce based
on the source code of Hadoop, version 1.0.4, a recent stable

version. We have modified mainly the JobTracker class, the
TaskTracker class and the MapTask class.

A. Implementation of JobTracker

In the JobTracker class, much of the work is spent on
implementing the slot manager. The slot manager is a thread
in the job tracker. The slot manager needs to detect whether
the system is in a thrashing state and decides on the proper
number of the slots periodically. After every time period,
the slot manager is almost certain that all the task trackers
have updated their statuses in the job trackers since the last
period, and thus can make a more accurate judgement on
the state of the system.

There are some issues we need to deal with when detect-
ing the thrashing phenomenon and deciding on the proper
number of working slots for the MapReduce jobs.

1) Slow Start: At the beginning of the execution of the
job, the data reported from the task trackers may not be
substantive enough for the slot manager to base on to make
a decision. Such data can lead to wrong decisions, and thus
impact the performance. For example, soon after the job has
started and yet no map tasks have finished, the shuffle rate
of the system is zero while the map output rate is non-zero.
This can lead to a wrong conclusion that the shuffle rate
cannot match the map output rate, and the job is suspected
to be reduce-heavy.

The slot manager adopts the “slow start” approach to
avoid this potential problem. The slot manager will only
start working after a certain portion of the map tasks have
finished executing and reported their running statistics to the
job tracker. In SMapReduce, the value of the start threshold
is 10% by default. The slot manager will start working after
10% of the total map tasks have finished.

2) Suspected Thrashing: As discussed in Section III, to
detect the occurrence of map thrashing, the slot manager
compares the average map processing rates when the number
of map slots increases. The map processing rate is measured
by the input rate of the map tasks. However, immediately
after responding to the slot change command, the map
processing rate of the task trackers will drop slightly at
first. So it is not advisable that the map processing rate
just after a slot change be used for comparison, which will
almost always give the result of the occurrence of thrashing.
According to our observation, the map processing rate after a
slot change will grow gradually to a stable range after some
time. Only then should the slot manager begin to consider
whether the system has indeed entered map thrashing.

Because of the nondeterministic nature of distributed sys-
tems, the slot manager still cannot conclude that the system
is approaching the thrashing state once the map processing
rate has grown to the stable range and is smaller than
what was before incrementing the map slot number. Instead,
under this circumstance, the slot manager will mark the
current state as suspected of thrashing, and give the system

another chance. If the system is detected to be suspected of
thrashing continuously, the slot manager can then announce
with confidence that the system is in a thrashing state.

The slot manager does not need to consider any reduce
thrashing problem, because the number of reduce slots in
the system is usually set to a small number, which is not
likely to cause thrashing. The number of reduce slots is set
low because one reduce slot can generate several threads, to
copy the map output data from all the other nodes in the
cluster during the shuffle phase. A large number of reduce
slots can cause network jam in the cluster.

3) Deciding the Slot Numbers: Initially, the slot manager
has a specific number of map slots and reduce slots as
configured by the user, just like in HadoopV1. It gradually
adjusts the number of slots based on the running status of
the jobs. To decide the proper number of map slots or reduce
slots for the job, the slot manager considers the two progress
stretches as discussed in Section III.

In the front stretch of the progress, when many map tasks
are running in parallel with the first wave of shuffle phases,
the slot manager needs to find out whether the shuffle rate
can catch up with the map output rate of a partition of the
reduce data. The map output rate of a partition of reduce
data is the data needed to be shuffled in the first wave of
shuffle phases. It is estimated under the assumption that
every shuffle phase needs to transfer the same amount of
map output data. Therefore, we have

Rm =
n

N
×Rt,

where Rm is the map output rate of a partition of reduce
data, n is the number of the running reduce tasks, N is the
number of total reduce tasks, and Rt is total map output
rate. The balance level of the shuffle phases and the map
tasks can be indicated by:

f =
Rs

Rm
,

where Rs is the shuffle rate. When the system is not in a
thrashing state, if the factor f is greater than an upper bound,
we say that the shuffle rate can catch up with the map output
rate, and this is the map-heavy case. The slot manager will
then increment the map slots by 1. If the factor f is smaller
than a lower bound, we say that the shuffle rate cannot match
the map output rate, and it is the reduce-heavy case. In this
case, the slot manager will decrement the map slots. When
the factor f is somewhere between the upper bound and the
lower bound, the system is considered in the balanced state
between shuffle and map, and will do nothing.

At the end of the front stretch and in the tail stretch,
when there are only a few or no map tasks, the map slots
are reduced and reduce slots can be increased.

B. Implementation of TaskTracker and MapTask
The main modification to the TaskTracker class is to add

the lazy policy of changing the slot number in the task

launcher without affecting the normal execution of the tasks.
The lazy policy is implemented by the consideration of
the expected slot number the task tracker is going to have.
Whenever a busy slot is released, the task launcher checks
whether the released slot should be shut down to meet the
expected slot number. Whenever a task wants to engage a
slot, it makes sure the free slot is not the one that should be
shut down because there are already as many slots running
as expected, and updates the number of working slots.

In the MapTask class, we added some extra statistics
needed by the slot manager. For example, the class records
the map output data size of the map task upon completion so
that the slot manager can use it to calculate the map output
rate of the system.

V. EVALUATION

The evaluation workbench is configured as follows: The
computer cluster consists of 18 nodes, each of which is
configured with 4 quad-core 2.53GHz Intel CPUs and 32GB
DDR3 memory, running the CentOS 2.6 operating system.
One node serves as the name node of HDFS [8], and one
as the job tracker of SMapReduce; the remaining 16 nodes
are the data nodes of HDFS as well as task trackers of
SMapReduce. The nodes are connected by switches with 16
GbE ports. We evaluate SMapReduce in a physical cluster
instead of in the virtual environment like that of Amazon in
order to minimise the affect of the virtual client machine
scheduling and virtual network. To reduce the impact of
the TCP incast problem in the network, the TCP minimum
retransmission timeout (RTOmin) is modified from 200ms
to 1ms [9].

We evaluate the performance of SMapReduce and com-
pare it with HadoopV1 and YARN using the benchmarks
from “Purdue MapReduce Benchmarks Suite” (PUMA)
[10]. This benchmark suite includes various practical jobs
and input data from real life. As the recommended reduce
task number is 99% of the number of reduce slots in the
cluster, and the default reduce slot number in the 16 task
trackers is 2, the reduce task number is set to 30 in all the
benchmarks. The block size of HDFS is set to 128MB.

We evaluate the performance of SMapReduce in terms
of the execution times of different benchmarks, progress
speed, the performance with different data input sizes, the
performance under different resource configurations, the
effects of the detection of thrashing and the slow start policy,
and multiple concurrent job workloads. All the experiment
results are the average values of the data collected from two
trials.

A. Performance in Various Benchmarks

To have an overall understanding of the performance of
SMapReduce, We run SMapReduce on these benchmarks
and compare their execution times in each phase with
HadoopV1 and YARN. The configuration of all the jobs in

Figure 3. The Execution Time of Each Benchmark in HadoopV1, YARN
and SMapReduce

HadoopV1 and SMapReduce is: 3 initial map slots and 2
initial reduce slots in each task tracker. Equivalently, YARN
is configured to able to run 3 map containers and 2 reduce
containers concurrently. Fig. 3 shows the experiment results.
The map time stands for the execution time when map tasks
run with the shuffle phases in parallel. The reduce time
stands for the execution time after the barrier when only
reduce tasks are running.

From the figure, SMapReduce has shorter map time,
shorter reduce time and higher job throughput than both
HadoopV1 and YARN in almost all benchmarks. Generally,
map-heavy jobs and medium reduce-heavy jobs have even
higher total performance increase than reduce-heavy jobs.
This is because map-heavy jobs usually have a higher
thrashing point, and any misconfiguration of map slots and
reduce slots leaves plenty of space for optimisation. For
instance, in the HistogramRating benchmark, In terms of
throughput, SMapReduce has 140% and 72% performance
increase than HadoopV1 and YARN, respectively. Terasort is
the only exception here, where SMapReduce execution time
is slightly longer than that of HadoopV1 and YARN. This is
because the current slot configuration happens to be optimal
for this job, and the management of slots in SMapReduce
adds a small overhead that has affected the job throughput.
But the overhead is so small that it should be negligible.

The total performance increase is mainly contributed to
by the map throughput increase. Because of the policy of
increasing the reduce slots appropriately when map tasks
are few or all finished, we can have reduce throughput
increase in many benchmarks, such as in InvertedIndex.
This policy failed to increase the reduce throughput in some
benchmarks, but the effect is very small.

B. Progress Speed

To undertand further the effect of slot management on
the performance of MapReduce jobs, we record the progress
percentage of the finished part of the jobs throughout their
execution. The total progress percentage of the job is 200%,
100% for the map tasks and 100% for the reduce tasks.
Fig. 4 shows the progress percentages over time of the
HistogramMovie benchmark running on MapReduce and

Figure 4. The Progress Percentage along the Time of the HistogramMovie
Benchmark on HadoopV1, YARN and SMapReduce

Figure 5. Map Time of the HistogramRating Benchmark under Different
Map Slot Configurations

SMapReduce, respectively. At the beginning, SMapReduce
progresses at approximately the same speed as HadoopV1
and YARN. However, as time goes by, the slot manager of
SMapReduce dynamically adjusts the number of slots for
the map tasks so that progress of the job is sped up. As
the configuration of slots is getting close to the optimal, the
speedup rate increases over time. Without slot management,
the job progresses at a constant speed in HadoopV1 and
YARN. Note the sharp turns of all the curves at the point
slightly above the 100% mark, which is when all map tasks
finish.

C. Different Resource Configurations

In the above evaluations, we configure the number of
map slots to 3 and the number of reduce slots to 2. It is
possible that HadoopV1 and YARN performs poorer than
SMapReduce simply because of the mis-configuration of
the number of slots (or container memories in YARN).
We evaluate SMapReduce under different configurations
of the number of map slots (or containers) and find that
SMapReduce still has a shorter map time in most cases.
Fig. 5 shows the map times of HadoopV1, YARN and
SMapReduce under different map slot configurations for the
HistogramRating benchmark.

In the HistogramRating benchmark, when the map slot
number is between 2 to 6, the map throughput of SMapRe-
duce is 10%-18% higher than that of YARN and 30%-
160% higher than that of HadoopV1. For the configuration
where HadoopV1 and YARN can achieve the minimum
map time—i.e., it happens to be the optimal map slot

Figure 6. HistogramRating Job Throughput of HadoopV1, YARN and
SMapReduce with Different Input Data Sizes

configuration—SMapReduce can still achieve the same map
performance as MapReduce.

We did not measure the performance of SMapReduce vs.
HadoopV1&YARN under different reduce slot configura-
tions because the number of reduce slots on each task tracker
is usually set to a small number (e.g., 2) to avoid too many
concurrent reduce tasks, which can jam the network.

D. Different Input Sizes

We also evaluate the scalability of SMapReduce. We
measure the job throughputs of SMapReduce with input
data of different sizes with the HistogramRating bench-
mark. Fig. 6 shows the result. As the input size increases,
the job throughput of SMapReduce increases, while those
of HadoopV1 and YARN remain almost unchanged. It is
because when the input size is large, SMapReduce has
more time to adjust the slots to the optimal configuration.
When the input size grows to 250GB, the job throughput of
SMapReduce is about 1.3 times that of YARN and 2.0 times
that of HadoopV1. One conclusion we can make is that the
larger the input data size, the more benefits we can get from
managing the slots at runtime.

E. Detecting Thrashing and Slow Start

Detecting the occurrence of thrashing and the slow start
policy are important considerations in our design of the
slot managing algorithm. We run experiments to see the
necessity and effects of detecting thrashing and the slow
start policy. Fig. 7 shows the results of the experiment
of comparing the map times of two benchmarks with and
without detecting thrashing, and with and without slow start.
In both benchmarks, without detecting thrashing, the map
time of SMapReduce is much longer than that of HadoopV1
and YARN. The mechanism of detecting thrashing can
greatly improve the performance of SMapReduce. Without
the slow start policy, the map time of the SMapReduce
may be either larger or smaller than that of HadoopV1
and YARN, depending on whether the slot manager has
made a right decision at the beginning when little runtime
information is available. Generally, SMapReduce applying
the slow start policy runs the map tasks faster than when
without the policy.

Figure 7. Map Time with and without Detecting Thrashing and Slow Start
Policy

Figure 8. Mean and Last Finished Execution Time of Multiple Concurrent
Job Workload of Grep Jobs

F. Multiple Concurrent Jobs

Hadoop is a shared environment, and in most use cases,
multiple concurrent jobs run in the system. We evaluate
SMapReduce with synthetic multiple job workloads. In the
multiple job workloads, we submit 4 jobs of the same
benchmark in total to the system, and each job is submitted
5 seconds after the previous job. In SMapReduce and
HadoopV1, we use the FIFO scheduler for multiple jobs.
In YARN, we use the capacity scheduler. Both of them are
the default schedulers respectively. The capacity scheduler
is similar to the FIFO scheduler, which tries to schedule
containers for early submitted jobs first. But the capacity
scheduler further considers the map tasks having a higher
scheduling priority than the reduce tasks. We compare the
mean execution time and the execution time when the last
job finishes. Fig. 8 and Fig. 9 show the performance of
the three systems running multiple Grep jobs and multiple
InvertedIndex jobs, respectively. SMapReduce has a shorter
mean execution and total execution time than HadoopV1 and
YARN in both cases. In the Grep workload, for instance, the
mean time and the time needed for the last job to finish in
SMapReduce are both only about 60% of that in HadoopV1,
and only about 70% of that in YARN. SMapReduce clearly
outperforms them for multiple concurrent job workloads.

VI. RELATED WORK

There are many existing works exploring different ways
to improve the performance of MapReduce.

YARN [6], the developed version of Hadoop, acts as a
resource manager of the cluster. Comparing to the static slot-
based implementation of HadoopV1, tasks run within the

Figure 9. Mean and Last Finished Execution Time of Multiple Concurrent
Job Workload of InvertedIndex Jobs

resource containers and make better utilisation of the cluster
resource. However, different configurations of resources for
each container can yield performance that varies greatly and
the best resource configuration is generally unpredictable.
YARN also assigns map tasks at a higher priority than the
reduce tasks to prevent too many reduce tasks blocking the
process of the map tasks. But unlike the dynamic allocation
decision in SMapReduce, the priority design is simple and
does not consider the runtime performance to determine
an optimal allocation policy in order to gain a higher job
throughput.

Many researchers also tried to optimise the task schedul-
ing policy for different application scenarios. They designed
schedulers to serve different goals, including finishing the
jobs before the deadlines [11] [12], maintaining the fairness
in the shared environment [13], and allowing priority in
jobs [14]. Some improved the scheduler for a specific
use case. HaLoop [15] makes the task scheduler aware
of the input data locality to support fast multiple-loop
iterative MapReduce jobs. And some developed scheduling
algorithms in specific hardware environments, such as the
hybrid computing environment [16] and the heterogeneous
cluster environment [17]. Instead, SMapReduce aims at
achieving the optimal job throughput in the homogeneous
cluster environment. It tries to reach this design goal by
considering how many slots should be allocated for the tasks
dynamically, so that the resources in the system are fully
utilised.

Breaking the synchronisation barriers between the map,
shuffle, sort, and reduce phases can improve the potential
parallelism level of the system [18] [19]. Wang et al. [20]
proposed a total ordering method when copying outputs
of the map for reducing. Total ordering enables parallel
execution of shuffle, merge and reduce phases, but requires
an extra synchronisation between map and shuffle. HPMR
[21] introduces prefetching and pre-shuffling into MapRe-
duce in the shared environment. However, these solutions
only maximise the logical parallelism of different phases,
but do not consider the full utilisation of available physical
resources in the system, and thus are unlikely to have an
optimal execution throughput of the jobs. SMapReduce, on
the other hand, can balance the resources even with the

existence of the synchronisation barrier and is optimal in
terms of the job throughput.

VII. FUTURE WORK AND CONCLUSION

Currently, SMapReduce only considers the case where
the cluster is homogeneous and the data are random in
distribution. We are working to extend SMapReduce to the
heterogeneous environment, which may be a common setting
in some small clusters.

In this paper, we study how the number of concurrent
tasks can affect the performance of MapReduce and build
a mathematics model to working out a way to properly
allocate the map slots and reduce slots so as to make
full utilisation of the resources in the system to achieve
the minimum execution time of a MapReduce job. We
implement SMapReduce, which can dynamically manage
the working slots for different types of job at runtime
to gain a higher job throughput. Evaluation results show
that SMapReduce has remarkable performance improvement
comparing to both HadoopV1 and YARN.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[2] J. Cohen, “Graph twiddling in a mapreduce world,” Comput-
ing in Science & Engineering, vol. 11, no. 4, pp. 29–41,
2009.

[3] J. Ekanayake, S. Pallickara, and G. Fox, “Mapreduce for data
intensive scientific analyses,” in eScience, 2008. eScience’08.
IEEE Fourth International Conference on. IEEE, 2008, pp.
277–284.

[4] J. Lin and C. Dyer, “Data-intensive text processing with
mapreduce,” Synthesis Lectures on Human Language Tech-
nologies, vol. 3, no. 1, pp. 1–177, 2010.

[5] T. White, Hadoop: the definitive guide. O’Reilly, 2012.

[6] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth
et al., “Apache hadoop yarn: Yet another resource negotiator,”
in Proceedings of the 4th annual Symposium on Cloud
Computing. ACM, 2013, p. 5.

[7] P. J. Denning, “Thrashing: Its causes and prevention,” in
Proceedings of the December 9-11, 1968, fall joint computer
conference, part I. ACM, 1968, pp. 915–922.

[8] D. Borthakur, “Hdfs architecture guide,”
Hadoop Apache Project. http://hadoop. apache.
org/common/docs/current/hdfs design. pdf, 2008.

[9] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding tcp incast throughput collapse in datacenter
networks,” in Proceedings of the 1st ACM workshop on
Research on enterprise networking. ACM, 2009, pp. 73–
82.

[10] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “Puma:
Purdue mapreduce benchmarks suite,” 2012.

[11] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguadé,
M. Steinder, and I. Whalley, “Performance-driven task co-
scheduling for mapreduce environments,” in Network Oper-
ations and Management Symposium (NOMS), 2010 IEEE.
IEEE, 2010, pp. 373–380.

[12] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria:
automatic resource inference and allocation for mapreduce
environments,” in Proceedings of the 8th ACM international
conference on Autonomic computing. ACM, 2011, pp. 235–
244.

[13] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica, “Delay scheduling: a simple tech-
nique for achieving locality and fairness in cluster schedul-
ing,” in Proceedings of the 5th European conference on
Computer systems. ACM, 2010, pp. 265–278.

[14] T. Sandholm and K. Lai, “Dynamic proportional share
scheduling in hadoop,” in Job scheduling strategies for par-
allel processing. Springer, 2010, pp. 110–131.

[15] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop:
Efficient iterative data processing on large clusters,” Proceed-
ings of the VLDB Endowment, vol. 3, no. 1-2, pp. 285–296,
2010.

[16] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner,
and Z. Zhang, “Moon: Mapreduce on opportunistic envi-
ronments,” in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing.
ACM, 2010, pp. 95–106.

[17] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica, “Improving mapreduce performance in heteroge-
neous environments.” in OSDI, vol. 8, no. 4, 2008, p. 7.

[18] Y. Guo, J. Rao, and X. Zhou, “ishuffle: Improving hadoop
performance with shuffle-on-write,” 10th International Con-
ference on Autonomic Computing, pp. 107–117, 2013.

[19] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears, “Mapreduce online.” in NSDI,
vol. 10, no. 4, 2010, p. 20.

[20] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Seh-
gal, “Hadoop acceleration through network levitated merge,”
in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis.
ACM, 2011, p. 57.

[21] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng,
“Hpmr: Prefetching and pre-shuffling in shared mapreduce
computation environment,” in Cluster Computing and Work-
shops, 2009. CLUSTER’09. IEEE International Conference
on. IEEE, 2009, pp. 1–8.

