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Abstract

Emotion recognition based on body movements is vital
in human-computer interaction. However, existing emotion
recognition methods predominantly focus on enhancing clas-
sification accuracy, often neglecting the provision of textual
explanations to justify their classifications. In this paper, we
propose an Emotion-Action Interpreter powered by Large
Language Model (EAI-LLM), which not only recognizes
emotions but also generates textual explanations by treating
3D body movement data as unique input tokens within large
language models (LLMs). Specifically, we propose a multi-
granularity skeleton tokenizer designed for LLMs, which sep-
arately extracts spatio-temporal tokens and semantic tokens
from the skeleton data. This approach allows LLMs to gener-
ate more nuanced classification descriptions while maintain-
ing robust classification performance. Furthermore, we treat
the skeleton sequence as a specific language and propose a
unified skeleton token module. This module leverages the ex-
tensive background knowledge and language processing ca-
pabilities of LLMs to address the challenges of joint train-
ing on heterogeneous datasets, thereby significantly enhanc-
ing recognition accuracy on individual datasets. Experimen-
tal results demonstrate that our model achieves recognition
accuracy comparable to existing methods. More importantly,
with the support of background knowledge from LLMs, our
model can generate detailed emotion descriptions based on
classification results, even when trained on a limited amount
of labeled skeleton data.

1 Introduction
In the field of human-computer interaction, a machine’s
ability to understand human emotions directly impacts the
user’s interaction experience (Fragopanagos and Taylor
2005; Mandryk, Atkins, and Inkpen 2006; Narayanan et al.
2020). Traditionally, the most common methods for emo-
tion recognition involve analyzing facial expressions and vo-
cal tones (Li and Deng 2022; El Ayadi, Kamel, and Karray
2011). However, accurately recognizing a user’s emotions
becomes particularly challenging when the user is distant
from the camera or when a microphone is unavailable.
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Numerous studies have shown that full-body motion is
a significant means of expressing emotion (Noroozi et al.
2018; Wang et al. 2024). Additionally, the large surface area
of the human torso facilitates data collection from a distance,
laying the foundation for more extensive emotion recogni-
tion scenarios (Wang et al. 2024). With recent advancements
in motion capture technology and human pose estimation al-
gorithms (Peng, Zheng, and Chen 2024; Zheng et al. 2023;
Zhang 2012), the acquisition of 2D and 3D skeleton data has
become more convenient. Notably, 3D skeleton data offer
the advantage of being resistant to variations in viewpoint,
lighting, and background clutter (Lu, Hu, and Hu 2023). As
a result, emotion recognition based on 3D full-body skeleton
data has garnered significant attention in recent years.

Most existing skeleton-based emotion recognition meth-
ods rely on handcrafted features (Fourati, Pelachaud, and
Darmon 2019; Daoudi et al. 2017; Oğuz and Ertuğrul 2024).
In addition, deep learning approaches such as those in
(Beyan et al. 2023), ST-Gait++ (Lima et al. 2024), and
BPM-GCN (Zhai et al. 2024) are also significant for learn-
ing emotion representations. However, these methods share
some common limitations: (i) Traditional emotion recogni-
tion techniques primarily focus on improving classification
accuracy and often lack the capability to provide textual
explanations that support their classifications. (ii) Due to
variations in data collection methods, 3D skeleton datasets
are often heterogeneous, with differences in the number of
joints and frame lengths. This heterogeneity impedes effec-
tive knowledge transfer between datasets and restricts the
potential for improving classification accuracy within indi-
vidual datasets.

Motivation. Inspired by the remarkable capabilities of
large language models (LLMs) across various domains (Li
et al. 2024; Qu, Cai, and Liu 2024), we are intrigued by the
potential of utilizing LLMs as emotion recognizers that can
not only classify emotions from skeleton data but also gener-
ate corresponding classification criteria. Several studies have
shown that LLMs hold some features that are useful for emo-
tion recognition. Specifically, these models are pre-trained
on vast corpora that include descriptions of emotional ac-
tions (Qiu et al. 2024; Li et al. 2023a). Therefore, convert-
ing 3D full-body skeleton data into tokens recognizable by
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LLMs, and utilizing the extensive background knowledge of
LLMs to classify emotions and generate detailed explana-
tions, would be highly valuable.

To address these challenges, we propose an Emotion-
Action Interpreter powered by Large Language Model
(EAI-LLM), which is capable of simultaneously recog-
nizing emotions from skeleton data and generating de-
tailed emotion descriptions. First, we introduce a Multi-
Granularity Skeleton Tokenizer (MGST) to enhance token
diversity, enabling LLMs to produce more fine-grained emo-
tion descriptions. To further improve performance, we im-
plement a Unified Skeleton Token (UST) module that incor-
porates a spatio-temporal masking mechanism. This module
not only addresses the challenges posed by heterogeneous
datasets but also enhances recognition accuracy on individ-
ual datasets. Additionally, we pre-train the EAI-LLM us-
ing a combination of skeleton-language data and fine-tune
it on prompt-based question-and-answer tasks. To convert
skeleton features into tokens recognizable by LLMs, we also
introduced a skeleton-text contrastive learning framework.
This approach aligns the skeleton feature space with the
semantic space using contrastive loss. Experimental results
demonstrate that the recognition capability of EAI-LLM is
comparable to existing methods, and it can generate detailed
emotion descriptions from classification results by leverag-
ing the background knowledge of LLMs.

In summary, our main contributions include:

• We propose a novel 3D full-body skeleton-based emo-
tion recognition model called EAI-LLM. To the best of
our knowledge, EAI-LLM is the first approach to utilize
LLMs as emotion recognizers while generating detailed
emotion descriptions directly from skeleton data.
• We propose a Multi-Granularity Skeleton Tokenizer

(MGST), which can enhance token diversity, with the
goal of improving the model’s ability to infer emotion
expressed through 3D skeleton movement sequences.
• We propose an Unified Skeleton Token (UST) module

designed for joint training in heterogeneous datasets. It
treats skeleton sequences as a specialized language, al-
lowing heterogeneous datasets to be unified within a
shared language space for training.

2 Related Work
2.1 Body Skeleton-based Emotion Recognition
Many studies have focused on using body movements,
postures, and gestures to recognize emotion. Tradition-
ally, emotion recognition from body movements has relied
on handcrafted features (Piana et al. 2016; Daoudi et al.
2017; Fourati, Pelachaud, and Darmon 2019). For instance,
(Glowinski et al. 2008) examined upper body motions, uti-
lizing features such as the number of local maxima and
the ratio between the maximum and the duration of the
largest peaks to identify emotions. Similarly, (Fourati and
Pelachaud 2015; Fourati, Pelachaud, and Darmon 2019) pro-
posed a full-body motion encoding scheme that extracted
over 110 motion features across three levels, anatomy, spa-
tial direction, and posture/movement, to describe expres-

sive movements. Additionally, (Oğuz and Ertuğrul 2024) ex-
plored commonly used time, frequency, and statistical-based
parameters, employing feature selection methods to select
four features from each frame to construct a feature matrix
for emotion recognition.

Recently, due to the impressive performance of neural
networks (Zeng et al. 2024; You et al. 2024), deep learn-
ing models have dominated the field of emotion recognition
from 3D skeleton movement sequences. (Ghaleb et al. 2021)
proposed a classifier network based on Spatial-Temporal
Graph Convolutional Networks (Yan, Xiong, and Lin 2018)
to recognize emotions from body movements. In (Zhang
et al. 2021), the authors introduced an attention-based
stacked LSTM network to detect the relationship between
emotions and movements. (Beyan et al. 2023) encoded var-
ious time intervals of 3D positional data into RGB im-
ages and then used Convolutional Neural Networks (CNNs)
for classification. Similarly, (Wang et al. 2024) combined
handcrafted features with CNN-learned image features and
employed a linear classifier for emotion prediction. Unlike
these previous models, which focus solely on classifica-
tion, our method not only accurately identifies emotion from
skeleton data but also provides interpretable explanations,
significantly broadening the model’s application scenarios.

2.2 Multi-modal Large Language Models
Recently, LLMs have demonstrated impressive capabilities
in generation and comprehension. Early models such as
BERT (Devlin et al. 2018), GPT-2 (Radford et al. 2019),
and T5 (Raffel et al. 2020), which were trained on web-
scale text data, laid the groundwork for the popularity of
large models. Subsequently, models with greater capacity,
more parameters, and extensive training data, such as GPT-
3 (Brown et al. 2020), Alpaca (Taori et al. 2023), PaLM
(Chowdhery et al. 2023), Vicuna (Chiang et al. 2023), and
LLaMA (Touvron et al. 2023), have been developed. Recent
advancements, such as InstructGPT (Ouyang et al. 2022),
have focused on aligning LLMs with human instructions and
feedback. ChatGPT (OpenAI 2024), Anthropic (Anthropic
2024), and GPT-4 (OpenAI 2023) now interact with users
and answer a broad range of diverse and complex questions.

Some studies have extended these models to other modal-
ities. Flamingo (Alayrac et al. 2022) and BLIP-2 (Li et al.
2023b) aligned pre-trained vision encoders with language
models using a cross-attention mechanism, establishing a
foundation for subsequent research in multi-modal LLMs.
More recently, the capabilities of LLMs to handle various
tasks have been further explored. GPT-4 (OpenAI 2023)
has demonstrated powerful visual understanding and rea-
soning abilities, while MiniGPT-4 (Zhu et al. 2023) and
LLaVA (Liu et al. 2023) produced detailed and accurate
image descriptions through a series of visual instruction-
tuning datasets. VideoChat (Li et al. 2023c) and VideoChat-
GPT (Maaz et al. 2023) utilized ChatGPT to generate video
instruction-tuning data, extending support to video modal-
ities. Despite these advancements, there remains a gap in
multi-modal LLMs capable of processing skeleton data. In
this work, we propose a new framework that enables LLMs
to handle skeleton-based body movement data.
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Figure 1: This work presents a novel approach for 3D full-body skeleton-based emotion recognition using fine-tuned LLMs,
termed EAI-LLM. Unlike previous methods, EAI-LLM not only identifies emotions but also generates textual explanations by
treating 3D body movement data as unique input tokens within the LLMs.

3 Method
Problem definition. Let X = {Xt ∈ RT∗J∗3}Tt=1 be a
3D skeleton sequence, where Xt denotes the frame at time
t with J body joint. Our objective is to input a 3D skeleton
movement sequence X into the EAI-LLM, which automati-
cally encodes X into semantic space, outputs corresponding
emotion labels for the body movement data and provides de-
tailed emotion descriptions.

Overview. We propose an emotion recognition framework
called EAI-LLM, as shown in Fig. 1. First, we introduce
a multi-granularity skeleton tokenizer that extracts spatio-
temporal tokens and semantic tokens distinctly. Second, we
employ a masking mechanism to normalize tokens of vary-
ing lengths to a unified length, thereby enabling joint train-
ing. Third, we use a linear projection layer to bridge the gap
between the skeleton encoder and LLMs, embedding the ex-
tracted multi-granularity skeleton tokens together with text
prompts as input for LLMs. Finally, we pre-train EAI-LLM
using a composite of skeleton-language data and fine-tune it
on prompt-based question-and-answer tasks.

3.1 Multi-Granularity Skeleton Tokenizer
Traditional skeleton-based emotion recognition methods
typically use a skeleton encoder to extract features, denoted
as F s ∈ RT∗J∗C , where C represents the base channel.
These features are then spatio-temporally compressed and
passed through a fully connected (FC) layer to obtain classi-
fication results. However, the fundamental design of LLMs
is to process text-based inputs, making it impossible to di-
rectly input skeleton sequence X into LLMs. To bridge this
gap, we develop a skeleton tokenizer to convert skeleton data
into a format compatible with the input structure of LLMs.

In this paper, we propose a multi-granularity skeleton to-
kenizer to enhance token diversity, thereby facilitating the
generation of more detailed text descriptions. First, we per-
form spatio-temporal pooling (STP) on the feature F s, fol-
lowed by processing through an FC layer to obtain a seman-
tic token zsg ∈ RC . This token encapsulates the global body
motion encoding information. While the semantic token is
advantageous for classification tasks, the spatio-temporal
pooling process can result in information loss, which is
detrimental in generation tasks.

To address this, we extract spatio-temporal tokens to en-
hance token diversity. Specifically, we employ a temporal
pooling (TP) layer and a 1×1 convolution layer to aggregate
the skeleton features F s across time. Similarly, we apply a
spatial pooling (SP) layer and a 1×1 convolution to aver-
age the spatial dynamics of all joints. The resulting spatio-
temporal features are then flattened separately into unified
representations, referred to as the spatial tokens zss ∈ RJ∗C

and temporal tokens zst ∈ RT∗C , respectively.

3.2 Unified Skeleton Token Module
Due to variations in data collection methods across differ-
ent datasets, the number of joints J and frame lengths T
can differ significantly among datasets. Consequently, the
dimensions of the spatio-temporal tokens extracted in Sec.
3.1 are inconsistent. Traditionally, classification tasks using
skeleton data have addressed this heterogeneity by training
separate models for each dataset. In this paper, we approach
skeleton sequences as a specialized form of language, where
differences in frame length and joint count are analogous to
sentences of varying lengths. To unify these differences, we
leverage the masking mechanism from natural language pro-
cessing by applying a mask to all skeleton tokens, as shown
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in Eq. (1). This approach allows us to merge all datasets into
a larger, unified dataset in the language space for emotion
representation learning.

zs′s = zss �Ms
s

zs′t = zst �Ms
t ,

(1)

where Ms
s and Ms

t are a 1 × L attention map that serves to
retain the original tokens and nullify the padded elements.
L represents the maximum length of all tokens. � denotes
element-wise multiplication.

3.3 Skeleton-Aware Large Language Model
LLMs typically take sentences in human language as in-
put instructions, but the skeleton sequences we use are not
well-compatible with LLMs. To enable LLMs to recognize
skeleton sequences and generate text descriptions, we apply
Low-Rank Adaptation (LoRA) (Hu et al. 2021) to LLMs so
that it better understands skeleton sequences while keeping
the model’s pre-trained weights unchanged. Specifically, for
each training sample composed of a skeleton sequence and
its corresponding emotion label and emotion description, we
perform the following steps:
1. We utilize a pre-trained GCN-based skeleton encoder to

obtain the initial skeleton tokens (zsg , zs′s , zs′t ).
2. Prior work on multimodal LLMs (Liu et al. 2023) show

that a learnable linear layer maps the visual feature space
to the linguistic feature space, enabling LLMs to handle
non-text data. Following this approach, we use a linear
layer to transform the initial 768-dimensional skeleton
token into a 4096-dimensional token, effectively bridging
the gap between the skeleton encoder and LLMs.

3. We design two prompts that conform to the LLaMA-2
conversation template, as shown below.

Emotion Recognition #Human: <Skeleton> <Skele-
tonFeature> </Skeleton> Can you tell me the emotion
of this person? #Assistant:

Emotion Description #Human: <Skeleton> <Skele-
tonFeature> </Skeleton> The emotion of this person is
[shame], please tell me some reasons for it. #Assistant:
In these prompts,<SkeletonFeature>represents a skele-
ton token derived in step 2, and the word within square
brackets represents an emotion label.

4. We concatenate the skeleton tokens with the prompt to-
kens and input them together into LLMs.

5. We use Eq. (2) to constrain the similarity between the
ground truth tokens tg and the predicted tokens tp, ad-
justing EAI-LLM through LoRA.

LLoRA = Lce(tp, tg), (2)
where Lce(., .) is the cross-entropy loss.

3.4 Skeleton-Language Alignment
Skeleton and text data exist in distinct feature spaces, mak-
ing it challenging for LLMs to interpret unaligned skeleton
features. To address this, we employ contrastive learning to
align the skeleton feature space with the linguistic feature
space, thus improving the compatibility of the skeleton to-
kens with LLMs.

Text 
Encoder

This is a happy 
person. This is a sad 

person.

L
con

(   ,zt)

L
con

(   ,zt)

L
con

(   ,zt)

Skeleton
EncoderFszt

Figure 2: Diagram of skeleton-language alignment.

Skeleton Encoder Our skeleton encoder is designed in a
manner similar to CTR-GCN (Chen et al. 2021), enabling
the extraction of skeleton features F s. Following pooling
and dimensional transformation, we derive a C-dimensional
feature vector zs. The backbone of the encoder is flexible
and can be substituted with other GCN-based networks.

Text Encoder We employ a pre-trained CLIP model
(specifically ViT-L/14) (Radford et al. 2021) as the text en-
coder to extract a feature vector zt representing the text
description. Drawing inspiration from ActionCLIP (Wang
et al. 2023), we manually design the text descriptions in the
format: ”This is a [happy] person.”, where the word within
the brackets changes according to the skeleton label.

Semantic Alignment Contrastive learning excels at uni-
fying data from different modalities into a shared feature
space, facilitating cross-modal knowledge transfer (Radford
et al. 2021; Xiang et al. 2023). Consequently, we employ
contrastive learning to align the skeleton feature space with
the linguistic feature space, enabling the compatibility of
these tokens with LLMs.

To bring the pairwise skeleton representation zs and text
description label representation zt closer together, we cal-
culate the skeleton-to-text and text-to-skeleton similarity
scores as specified in Eq. (3).

ps2ti (zsi ) =
exp (cos (zsi , z

t
i) /τ)∑N

j=1 exp
(
cos
(
zsi , z

t
j

)
/τ
)

pt2si

(
zti
)
=

exp (cos (zti , z
s
i ) /τ)∑N

j=1 exp
(
cos
(
zti , z

s
j

)
/τ
) , (3)

where cos represents cosine similarity, τ is the tempera-
ture hyper-parameter, N represents the batch size. Since the
number of skeleton sequences greatly exceeds the number
of emotion labels, there will be multiple skeleton sequences
with the same label within the same batch. Consequently,
using cross-entropy to calculate the similarity between ps2ti
and pt2si is not suitable. Therefore, we redefine the skeleton-
text contrastive loss using the Kullback–Leibler (KL) diver-
gence, as shown in Eq. (4).

Lcon

(
zs, zt

)
=

1

2
E(zs,zt)∼D

[
KL
(
ps2t(zs), ŷ)

+KL
(
pt2s(zt), ŷ

)]
,

(4)
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where D is the entire dataset. The ground-truth ŷ is defined
as 1 for positive pairs and 0 for negative pairs.

In this paper, we optimize the semantic tokens and spatio-
temporal tokens using skeleton-language alignment, making
them more easily recognized by LLMs. The loss functions
can be represented by Eq. (5) and Eq. (6), respectively.

Lst = Lce(z
s
g, y) +

1

2
(Lcon(z

s
s , z

t) + Lcon(z
s
t , z

t)), (5)

Lse = Lce(z
s
g, y) + Lcon(z

s
g, z

t), (6)

where y is the one-hot presentation of the emotion label.

4 Experiment
4.1 Datasets
Emilya The EMotional body expression In daILY Actions
dataset (Fourati and Pelachaud 2016) comprises 8,206 sam-
ples. Eleven actors performed eight emotions—Neutral, Joy,
Anger, Panic, Fear, Anxiety, Sadness, and Shame—across
seven daily actions, including sitting, walking, and lifting.
Data were recorded using the Xsens MVN system, captur-
ing 28 3D joints at a frequency of 120 Hz.

KDAE The Kinematic Dataset of Actors Expressing Emo-
tions (Zhang et al. 2020) was collected using a portable mo-
tion capture system that tracked 72 body markers at a fre-
quency of 125 Hz. This dataset includes 1,402 recordings of
seven emotions: Happiness, Sadness, Neutral, Anger, Dis-
gust, Fear, and Surprise, performed by 22 semi-professional
actors. For our analysis, we excluded hand joints and fo-
cused on 24 full-body joints.

EGBM The Emotional Gestures and Body Movements
Corpus (Sapiński et al. 2019) contains 560 samples recorded
by a Kinect V2 camera at 30 Hz. Sixteen Polish professional
actors, evenly split between men and women aged 25 to
64, expressed seven emotions: Happiness, Sadness, Neutral,
Anger, Disgust, Fear, and Surprise. Each emotion is repre-
sented by 80 samples, with 3D positions for 25 joints.

Emotion Description The aforementioned datasets only
include emotional labels without detailed descriptions of
emotional actions. To fully leverage the generative capabil-
ities of LLMs, we manually annotated a subset of new data
with fine-grained descriptions of emotional actions. For an-
notation, we referred to the emotional action descriptions
provided in (Noroozi et al. 2018). In total, 174 samples from
the Emilya dataset and 105 samples from the KDAE dataset
were labeled with these detailed descriptions.

4.2 Implementation Details
All experiments are conducted on NVIDIA 4×A100 GPUs
and are implemented using the PyTorch framework (Paszke
et al. 2019). We use LLaMA-7B (Touvron et al. 2023) as
the base LLMs. For data preprocessing, we followed the
scheme outlined in CTR-GCN (Chen et al. 2021), adjust-
ing each sample to 64 frames by padding shorter sequences
with previous frames and downsampling longer sequences.

Dataset Spatial Tokens Temporal Tokens Accuracy

Emilya
X 85.08

X 83.62
X X 86.36

KDAE
X 62.99

X 61.21
X X 63.35

EGBM
X 53.21

X 49.54
X X 55.96

Table 1: Classification results using spatial tokens and tem-
poral tokens.

Token Type Dataset Separate Joint

Semantic
Emilya 80.63 85.44
KDAE 67.97 71.17
EGBM 61.47 66.97

Spatio-temporal
Emilya 86.36 86.42
KDAE 63.35 62.28
EGBM 55.96 63.30

Table 2: Classification results for various training strategies.

Training For emotion description, the model is trained for
10,000 steps using labeled datasets. The LoRA parameters
are configured with a rank of 64, an alpha of 16, and a
dropout rate of 0.05. The global batch size is 16, and the
maximum learning rate is 1e-5. For emotion recognition,
the model undergoes 800,000 training steps, with the global
batch size increased to 64. The LoRA parameters and max-
imum learning rate remain the same as in the emotion de-
scription stage. During skeleton encoder pre-training, we op-
timize the model for 200 epochs using the stochastic gradi-
ent descent (SGD) optimizer with an initial learning rate of
0.1 and a batch size of 64. The learning rate is reduced by a
factor of 10 at epochs 100, 150, and 175. A warm-up strat-
egy is applied for the first 5 epochs.

Evaluation Protocols We randomly split the dataset into
training and testing sets at a 4:1 ratio. In emotion recogni-
tion, we extract the emotion labels from the generated sen-
tences and compare them with the ground truth labels to
compute accuracy. It is important to note that if a sentence
contains multiple emotion labels or no emotion label, it will
be marked as ’Error’. However, if the labels are synonyms or
different grammatical forms of the same label, the recogni-
tion is deemed successful. For emotion description, we use
three commonly employed metrics in natural language pro-
cessing: Rouge, BLEU, and METEOR.
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Emotion Description Task Emotion Recognition Task

Token Type Order Accuracy Rouge BLEU METEOR Accuracy Rouge-1 BLEU METEOR

Semantic D→R N/A 0.1939 0.1301 0.2632 81.30 0.2018 0.1177 0.2148
Semantic R→D 82.04 N/A 44.98 0.3138 0.2488 0.3408

Spatio-temporal D→R N/A 0.2774 0.2239 0.2941 81.40 0.2065 0.0401 0.0735
Spatio-temporal R→D 81.45 N/A 19.59 0.2714 0.2149 0.2849

Table 3: Comparison of classification and emotion description results under different training orders. D→R indicates that the
emotion description task is completed first, followed by the recognition task, while R→D indicates the reverse order.

4.3 Comparisons for Emotion Recognition
Evaluation on Spatio-temporal Tokens We evaluate the
classification results utilizing spatial and temporal tokens
both separately and in combination, as presented in Tab. 1.
The results indicate that the separate classification of spa-
tial and temporal tokens leads to lower accuracy when com-
pared to their combined application across all three datasets.
The integration of spatial and temporal tokens provides the
model with more comprehensive information, thereby val-
idating the effectiveness of our proposed multi-granularity
skeleton tokenizer.

Evaluation of Different Training Strategies We evaluate
the effectiveness of separate training strategy and joint train-
ing strategies with UST module by using skeleton tokens at
different granularities. The results, presented in Tab. 2, show
that using semantic tokens with joint training significantly
improved classification accuracy across all three datasets,
with an average increase of 4.5%. Specifically, when em-
ploying spatio-temporal tokens, the accuracy on the EGBM
dataset increased by 7.34%. However, improvements are less
pronounced for other datasets, with a slight decrease in ac-
curacy observed on the KDAE dataset. These results suggest
that joint training with semantic tokens enhances knowledge
transfer between datasets, leading to better classification ac-
curacy for individual datasets.

To further investigate the impact of UST module on
recognition results, we plot the confusion matrix for the
Emilya dataset, which has the largest number of samples.
As shown in Fig. 3, the classification accuracy for anxiety,
shame, and pride has significantly improved after employ-
ing the joint training strategy. Notably, these three emotions
are absent in the KDAE and EGBM datasets. Compared to
separate training, the joint training strategy has enhanced
the model’s recognition of emotions common to all three
datasets, thereby positively influencing the recognition of
emotion labels unique to the Emilya dataset.

4.4 Comparisons for Emotion Description
In this section, we compare the impact of semantic to-
kens and spatio-temporal tokens on emotion description and
recognition results. Our model is designed to handle both
emotion description and emotion recognition tasks simulta-
neously, so we also report the effects of different training
orders on the results. Note that all results are obtained un-

(a) Separate (b) Joint

Figure 3: Confusion matrices for Emilya dataset using dif-
ferent training strategies.

der joint training strategy, and both accuracy and generation
metrics are averaged across the three datasets.

As shown in Tab. 3, we can draw three conclusions:
(i) In the emotion description task, spatio-temporal to-
kens outperform semantic tokens, whereas in the emo-
tion recognition task, the opposite is true. This advan-
tage is likely because spatio-temporal tokens retain richer
spatial and temporal information, which enhances the detail
and quality of the generated descriptions. Semantic tokens
are more concise and contribute better to classification. (ii)
The training order of different tasks significantly affects
the recognition results. When training the emotion descrip-
tion and emotion recognition tasks separately, good results
can be achieved regardless of which tokens are used. How-
ever, when the emotion recognition task is completed first,
and then the emotion description task is fine-tuned, catas-
trophic forgetting occurs. This results in a significant drop
in average recognition accuracy by 37.06% and 61.86% for
semantic and spatio-temporal tokens, respectively. This is-
sue may arise from conflicting demands within the model
for both emotion recognition and description capabilities.
EAI-LLM imposes stringent constraints on recognition out-
comes, expecting results to be framed in specific sentences,
such as ”This is a happy person.”. These constraints often
conflict with the diverse requirements of generation tasks,
leading to reduced recognition accuracy when generation
tasks are performed after recognition tasks. (iii) Semantic
tokens offer a balanced trade-off between recognition ac-
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Input Skeleton 

Question: The emotion of this person is shame, please tell me some 
reasons for it.

EAI-LLM (Ours): This is a shame person, with his head down and 
hands covering his face, showing a large amount of shame.

Gemini Pro: If the person's posture is collapsed inward, as if trying 
to make itself smaller, with hunched shoulders and a tucked chin, it 
could suggest shame. Additionally, the person might avoid direct eye 
contact, further emphasizing a desire to hide or disappear, which are 
common physical manifestations of shame.

GPT-4: The person in the video might be exhibiting shame if their 
movements include lowering the head, avoiding eye contact, or 
turning the body away as if trying to hide. They might also have 
slouched shoulders or a closed-off posture, indicating a desire to 
withdraw or make themselves smaller. These actions suggest a 
feeling of discomfort or embarrassment, which are typical physical 
manifestations of shame.

Figure 4: Examples for emotion description capabilities of
EAI-LLM. Underlined text indicates that the description is
unrelated to the input sequences.

curacy and description capability. Although semantic to-
kens show lower accuracy compare to spatio-temporal to-
kens in emotion recognition tasks, their performance in sub-
sequent emotion description tasks does not decline signifi-
cantly, thereby maintaining relatively good accuracy.

4.5 Comparison with the State-of-the-Art
Due to the limited reporting on skeleton-based emotion
recognition and the absence of a standardized evaluation
method, we have chosen to compare our approach with ex-
isting methods used in skeleton-based action recognition,
which are analogous to emotion recognition. To ensure a fair
comparison, we re-implemented all methods and standard-
ized the data preprocessing procedures. As shown in Tab.
4, our method demonstrates accuracy comparable to exist-
ing approaches on the KDAE and EGBM datasets, with the
best accuracy reaching 71.17% and 66.97%, respectively.
However, on the Emilya dataset, the accuracy only reached
85.44%, still lagging behind other methods.

During the annotation process of the emotion description
dataset, we converte the skeleton sequences into videos and
then labeled the emotional action features by viewing these
videos. Detailed examples are provided in the supplemen-
tary materials. Since current multi-modal large models do
not support direct input of the original skeleton sequences,
we instead input the videos derived from these skeleton se-
quences into the multi-modal LLMs, using the same prompts
as EAI-LLM. As shown in Tab. 5, when using the same
prompt words, the metrics produced by our method surpass

Emilya KDAE EGBM D

AGCN (Shi et al. 2019) 88.92 56.58 22.94 ×
CTR-GCN (Chen et al. 2021) 89.77 70.46 63.30 ×
GAP (Xiang et al. 2023) 89.16 67.26 66.06 ×
EAI-LLM (Ours) 85.44 71.17 66.97 X

Table 4: Comparisons of emotion recognition capabilities
with the state-of-the-art methods. Bold and underline indi-
cate the best and the second best result. D represents emo-
tion description ability from 3D skeleton sequences.

Rouge BLEU METEOR R

GPT-4 0.1282 0.0686 0.2006 ×
Gemini 1.5 Pro 0.1007 0.0596 0.1823 ×

EAI-LLM (Ours) 0.2018 0.1177 0.2148 X

Table 5: Comparison of emotion description capabilities
with mainstream multimodal LLMs. R represents emotion
recognition ability from 3D skeleton sequences.

those generated by popular multi-modal LLMs.
We present the visualization results in Fig. 4. The emo-

tion descriptions generated by EAI-LLM exhibit significant
consistency with the input sequences. In contrast, while both
GPT-4 (OpenAI 2023) and Gemini 1.5 Pro (Research 2024)
can also generate emotion descriptions from video, these de-
scriptions largely reflect the models’ background knowledge
and do not align as well with the input sequences.

Limitations Since EAI-LLM is built upon LLMs, it in-
herits the LLM’s limitations, such as hallucination, which
can lead to ambiguous outputs. For instance, when given
an input labeled as ”Anxiety”, EAI-LLM might generate:
”This person is expressing anxiety or fear.” The output con-
tains multiple emotional labels and cannot be clearly catego-
rized under a specific emotional label, thereby resulting in a
recognition failure.

5 Conclusion

In this paper, we have introduced a novel emotion recogni-
tion model, EAI-LLM, designed to identify emotions from
3D full-body skeleton sequences and generate detailed emo-
tion descriptions. We have used LLaMA as the language de-
coder and fine-tuned it on prompt-based question-answering
tasks. Specifically, we have extracted skeleton tokens at var-
ious granularities to enable our model to produce more nu-
anced emotion descriptions. Additionally, the unified skele-
ton token module has significantly enhanced the accuracy
of emotion recognition on individual datasets. Experimen-
tal results have demonstrated that our model effectively rec-
ognizes emotions from skeleton data and generates detailed
emotion descriptions, even with limited data annotations.
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